Skip to content

CAT: a computational anatomy toolbox for the analysis of structural MRI data.

文献信息

DOI10.1093/gigascience/giae049
PMID39102518
期刊GigaScience
影响因子3.9
JCR 分区Q1
发表年份2024
被引次数466
关键词阿尔茨海默病,CAT12,MRI,ROI,SPM12
文献类型Journal Article
ISSN2047-217X
期号13()
作者Christian Gaser, Robert Dahnke, Paul M Thompson, Florian Kurth, Eileen Luders, The Alzheimer's Disease Neuroimaging Initiative

一句话小结

本文介绍了计算解剖工具箱(CAT),这是一种功能强大的脑形态测量分析工具,旨在为神经科学界提供直观且全面的分析选项和工作流程。CAT 适合不同水平的用户,支持多种形态测量分析,并包含质量控制措施,促进了人脑映射研究的标准化和可重复性。

在麦伴科研 (maltsci.com) 搜索更多文献

阿尔茨海默病 · CAT12 · MRI · ROI · SPM12

摘要

神经科学界开发了一系列复杂的脑影像分析工具,极大地推动了人脑映射领域的发展。在这里,我们介绍计算解剖工具箱(Computational Anatomy Toolbox, CAT)——这是一套功能强大的脑形态测量分析工具,具有直观的图形用户界面,同时也可以作为脚本使用。CAT 适合初学者、普通用户、专家和开发者,提供了一整套综合的分析选项、工作流程和集成管道。可用的分析流程——在一个示例数据集上进行了说明——支持基于体素、基于表面和基于区域的形态测量分析。值得注意的是,CAT 包含多种质量控制选项,并覆盖整个分析工作流程,包括横断面和纵向数据的预处理、统计分析和结果的可视化。本文的总体目标是提供对 CAT 的完整描述和评估,同时为神经科学界提供一个可引用的标准。

英文摘要

A large range of sophisticated brain image analysis tools have been developed by the neuroscience community, greatly advancing the field of human brain mapping. Here we introduce the Computational Anatomy Toolbox (CAT)-a powerful suite of tools for brain morphometric analyses with an intuitive graphical user interface but also usable as a shell script. CAT is suitable for beginners, casual users, experts, and developers alike, providing a comprehensive set of analysis options, workflows, and integrated pipelines. The available analysis streams-illustrated on an example dataset-allow for voxel-based, surface-based, and region-based morphometric analyses. Notably, CAT incorporates multiple quality control options and covers the entire analysis workflow, including the preprocessing of cross-sectional and longitudinal data, statistical analysis, and the visualization of results. The overarching aim of this article is to provide a complete description and evaluation of CAT while offering a citable standard for the neuroscience community.

麦伴智能科研服务

智能阅读回答你对文献的任何问题,帮助理解文献中的复杂图表和公式
定位观点定位某个观点在文献中的蛛丝马迹
加入知识库完成数据提取,报告撰写等更多高级知识挖掘功能

主要研究问题

  1. CAT工具在不同类型的脑成像数据分析中,如何选择合适的分析流?
  2. 在使用CAT进行脑形态测量分析时,如何确保数据的质量控制?
  3. CAT是否支持与其他脑成像分析软件的集成,能够实现数据的互操作性?
  4. 对于初学者来说,使用CAT进行分析时有哪些常见的挑战和解决方案?
  5. CAT在处理纵向数据分析时,是否有特定的推荐工作流程或最佳实践?

核心洞察

研究背景和目的

随着神经科学领域的迅速发展,针对人脑结构的高效分析工具变得尤为重要。本文介绍了计算解剖工具箱(CAT),旨在提供一个强大的脑形态学分析工具集,适用于不同水平的用户,包括初学者和专家。CAT不仅提供直观的图形用户界面,还支持脚本命令行操作,覆盖了整个分析流程,从数据预处理到结果可视化。

主要方法/材料/实验设计

CAT的处理流程主要分为两个处理流:体素基础处理和表面基础处理,用户可以根据需求选择相应的分析方法。CAT支持体素基础形态测量(VBM)、表面基础形态测量(SBM)以及区域基础形态测量(RBM)。

Mermaid diagram

关键结果和发现

  1. 性能评估:CAT在处理速度和灵敏度方面表现优异,能够有效检测不同噪声水平下的神经影像效应。
  2. 示例应用:在对阿尔茨海默病患者的研究中,CAT能够准确区分患者与健康对照组之间的灰质体积和皮层厚度差异。
  3. 分析流的比较:CAT的纵向分析流在映射结构变化方面比横向分析流更为准确,尤其在监测脑部塑性变化时表现突出。

主要结论/意义/创新性

CAT的推出为神经科学研究提供了一个强大的工具,具有高度的可扩展性和灵活性,适用于不同规模的研究项目。CAT的综合分析选项和高效的质量控制功能使其在脑影像分析中具有重要意义,尤其是在处理复杂的临床数据时。CAT不仅能处理结构性MRI数据,还能扩展到功能性、扩散性和定量MRI数据的分析。

研究局限性和未来方向

尽管CAT在多个方面表现出色,但仍存在一些局限性,如对特定数据集的依赖和在某些复杂情况下的适用性。未来的研究可以集中在优化算法以提高处理速度和准确性,并扩展CAT的功能以支持更多类型的影像数据。同时,进一步的用户反馈和社区参与将促进CAT的持续改进和更新。

参考文献

  1. ExploreASL: An image processing pipeline for multi-center ASL perfusion MRI studies. - Henk J M M Mutsaerts;Jan Petr;Paul Groot;Pieter Vandemaele;Silvia Ingala;Andrew D Robertson;Lena Václavů;Inge Groote;Hugo Kuijf;Fernando Zelaya;Owen O'Daly;Saima Hilal;Alle Meije Wink;Ilse Kant;Matthan W A Caan;Catherine Morgan;Jeroen de Bresser;Elisabeth Lysvik;Anouk Schrantee;Astrid Bjørnebekk;Patricia Clement;Zahra Shirzadi;Joost P A Kuijer;Viktor Wottschel;Udunna C Anazodo;Dasja Pajkrt;Edo Richard;Reinoud P H Bokkers;Liesbeth Reneman;Mario Masellis;Matthias Günther;Bradley J MacIntosh;Eric Achten;Michael A Chappell;Matthias J P van Osch;Xavier Golay;David L Thomas;Enrico De Vita;Atle Bjørnerud;Aart Nederveen;Jeroen Hendrikse;Iris Asllani;Frederik Barkhof - NeuroImage (2020)
  2. Current understanding of magnetic resonance imaging biomarkers and memory in Alzheimer's disease. - Ece Bayram;Jessica Z K Caldwell;Sarah J Banks - Alzheimer's & dementia (New York, N. Y.) (2018)
  3. Brainstorm: a user-friendly application for MEG/EEG analysis. - François Tadel;Sylvain Baillet;John C Mosher;Dimitrios Pantazis;Richard M Leahy - Computational intelligence and neuroscience (2011)
  4. A new improved version of the realistic digital brain phantom. - Berengere Aubert-Broche;Alan C Evans;Louis Collins - NeuroImage (2006)
  5. Accurate automatic estimation of total intracranial volume: a nuisance variable with less nuisance. - Ian B Malone;Kelvin K Leung;Shona Clegg;Josephine Barnes;Jennifer L Whitwell;John Ashburner;Nick C Fox;Gerard R Ridgway - NeuroImage (2015)
  6. A Population-Average, Landmark- and Surface-based (PALS) atlas of human cerebral cortex. - David C Van Essen - NeuroImage (2005)
  7. Influence of Processing Pipeline on Cortical Thickness Measurement. - Shahrzad Kharabian Masouleh;Simon B Eickhoff;Yashar Zeighami;Lindsay B Lewis;Robert Dahnke;Christian Gaser;Francois Chouinard-Decorte;Claude Lepage;Lianne H Scholtens;Felix Hoffstaedter;David C Glahn;John Blangero;Alan C Evans;Sarah Genon;Sofie L Valk - Cerebral cortex (New York, N.Y. : 1991) (2020)
  8. A fast diffeomorphic image registration algorithm. - John Ashburner - NeuroImage (2007)
  9. Algorithms to improve the reparameterization of spherical mappings of brain surface meshes. - Rachel A Yotter;Paul M Thompson;Christian Gaser - Journal of neuroimaging : official journal of the American Society of Neuroimaging (2011)
  10. A comparison between voxel-based cortical thickness and voxel-based morphometry in normal aging. - Chloe Hutton;Bogdan Draganski;John Ashburner;Nikolaus Weiskopf - NeuroImage (2009)

引用本文的文献

  1. Divergent brain changes in two audiogenic rat strains: A voxel-based morphometry and diffusion tensor imaging comparison of the genetically epilepsy prone rat (GEPR-3) and the Wistar Audiogenic Rat (WAR). - Yichien Lee;Olga C Rodriguez;Chris Albanese;Victor Rodrigues Santos;José Antônio Cortes de Oliveira;Ana Luiza Ferreira Donatti;Artur Fernandes;Norberto Garcia-Cairasco;Prosper N'Gouemo;Patrick A Forcelli - Neurobiology of disease (2018)
  2. Age-Related Gray and White Matter Changes in Normal Adult Brains. - Farnaz Farokhian;Chunlan Yang;Iman Beheshti;Hiroshi Matsuda;Shuicai Wu - Aging and disease (2017)
  3. Assessing the marks of change: how psychotherapy alters the brain structure in women with borderline personality disorder. - Falk Mancke;Ruth Schmitt;Dorina Winter;Inga Niedtfeld;Sabine C Herpertz;Christian Schmahl - Journal of psychiatry & neuroscience : JPN (2018)
  4. The association between brain volume, cortical brain infarcts, and physical frailty. - Ilse M J Kant;Jeroen de Bresser;Simone J T van Montfort;Ellen Aarts;Jorrit-Jan Verlaan;Norman Zacharias;Georg Winterer;Claudia Spies;Arjen J C Slooter;Jeroen Hendrikse; - Neurobiology of aging (2018)
  5. Lead-DBS v2: Towards a comprehensive pipeline for deep brain stimulation imaging. - Andreas Horn;Ningfei Li;Till A Dembek;Ari Kappel;Chadwick Boulay;Siobhan Ewert;Anna Tietze;Andreas Husch;Thushara Perera;Wolf-Julian Neumann;Marco Reisert;Hang Si;Robert Oostenveld;Christopher Rorden;Fang-Cheng Yeh;Qianqian Fang;Todd M Herrington;Johannes Vorwerk;Andrea A Kühn - NeuroImage (2019)
  6. Dream Recall Frequency Is Associated With Medial Prefrontal Cortex White-Matter Density. - Raphael Vallat;Jean-Baptiste Eichenlaub;Alain Nicolas;Perrine Ruby - Frontiers in psychology (2018)
  7. Apparent diffusion coefficient changes in human brain during sleep - Does it inform on the existence of a glymphatic system? - Şükrü Barış Demiral;Dardo Tomasi;Joelle Sarlls;Hedok Lee;Corinde E Wiers;Amna Zehra;Tansha Srivastava;Kenneth Ke;Ehsan Shokri-Kojori;Clara R Freeman;Elsa Lindgren;Veronica Ramirez;Gregg Miller;Peter Bandettini;Silvina Horovitz;Gene-Jack Wang;Helene Benveniste;Nora D Volkow - NeuroImage (2019)
  8. Empirical examination of the replicability of associations between brain structure and psychological variables. - Shahrzad Kharabian Masouleh;Simon B Eickhoff;Felix Hoffstaedter;Sarah Genon; - eLife (2019)
  9. HIV infection and age effects on striatal structure are additive. - Erin E O'Connor;Timothy Zeffiro;Oscar L Lopez;James T Becker;Thomas Zeffiro - Journal of neurovirology (2019)
  10. Higher cardiovascular fitness level is associated with lower cerebrovascular reactivity and perfusion in healthy older adults. - Brittany Intzandt;Dalia Sabra;Catherine Foster;Laurence Desjardins-Crépeau;Richard D Hoge;Christopher J Steele;Louis Bherer;Claudine J Gauthier - Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism (2020)

... (456 更多 篇文献)


© 2025 MaltSci 麦伴科研 - 我们用人工智能技术重塑科研