Skip to content

Optical nanomaterial-based detection of biomarkers in liquid biopsy.

文献信息

DOI10.1186/s13045-024-01531-y
PMID38486294
期刊Journal of hematology & oncology
影响因子40.4
JCR 分区Q1
发表年份2024
被引次数15
关键词循环外泌体, 循环肿瘤DNA, 循环肿瘤细胞, 循环肿瘤标志物, 液体活检
文献类型Journal Article, Review, Research Support, Non-U.S. Gov't
ISSN1756-8722
页码10
期号17(1)
作者Young Jun Kim, Won-Yeop Rho, Seung-Min Park, Bong-Hyun Jun

一句话小结

液体活检作为一种新兴的微创诊断手段,能够通过检测血液等生物液体中的疾病相关标志物实现早期诊断和有效治疗,但其应用仍面临挑战。本文综述了基于光学纳米材料的传感器在提升液体活检中循环肿瘤细胞和DNA等生物标志物的敏感检测能力方面的最新进展,为克服相关技术难题提供了重要机遇。

在麦伴科研 (maltsci.com) 搜索更多文献

循环外泌体 · 循环肿瘤DNA · 循环肿瘤细胞 · 循环肿瘤标志物 · 液体活检

摘要

液体活检作为一种微创的替代组织活检的程序,已被引入作为一种新的诊断/预后手段。通过筛查来自血液或其他生物液体的疾病相关标志物,它承诺实现早期诊断、及时预后和有效治疗。然而,由于其概念和实践上的挑战,液体活检的全面应用仍需很长时间。液体活检所检测的生物标志物,如循环肿瘤细胞(CTC)和循环肿瘤DNA(ctDNA),极其稀少,且常常被大量正常细胞成分所掩盖,这需要超灵敏和准确的检测方法来推动液体活检技术的发展。基于纳米材料的光学生物传感器因其增强的传感性能和简单实用的特性,为液体活检提供了重要机遇。在本文综述中,我们总结了光学纳米材料的最新创新,以展示对蛋白质、肽、ctDNA、miRNA、外泌体和CTC的敏感检测。每项研究都采用量身定制的设计来制备光学纳米材料,以增强传感性能,并满足每种生物标志物的要求。金属纳米颗粒(NPs)、量子点、上转换纳米颗粒、二氧化硅纳米颗粒、高分子纳米颗粒以及碳纳米材料独特的光学特性被用于敏感检测机制。这些利用光学纳米材料在液体活检中的最新进展,为我们提供了克服挑战性问题的机遇,并为理解生物标志物的未知特性以及疾病机制提供了资源。

英文摘要

Liquid biopsy, which is a minimally invasive procedure as an alternative to tissue biopsy, has been introduced as a new diagnostic/prognostic measure. By screening disease-related markers from the blood or other biofluids, it promises early diagnosis, timely prognostication, and effective treatment of the diseases. However, there will be a long way until its realization due to its conceptual and practical challenges. The biomarkers detected by liquid biopsy, such as circulating tumor cell (CTC) and circulating tumor DNA (ctDNA), are extraordinarily rare and often obscured by an abundance of normal cellular components, necessitating ultra-sensitive and accurate detection methods for the advancement of liquid biopsy techniques. Optical biosensors based on nanomaterials open an important opportunity in liquid biopsy because of their enhanced sensing performance with simple and practical properties. In this review article, we summarized recent innovations in optical nanomaterials to demonstrate the sensitive detection of protein, peptide, ctDNA, miRNA, exosome, and CTCs. Each study prepares the optical nanomaterials with a tailored design to enhance the sensing performance and to meet the requirements of each biomarker. The unique optical characteristics of metallic nanoparticles (NPs), quantum dots, upconversion NPs, silica NPs, polymeric NPs, and carbon nanomaterials are exploited for sensitive detection mechanisms. These recent advances in liquid biopsy using optical nanomaterials give us an opportunity to overcome challenging issues and provide a resource for understanding the unknown characteristics of the biomarkers as well as the mechanism of the disease.

麦伴智能科研服务

智能阅读回答你对文献的任何问题,帮助理解文献中的复杂图表和公式
定位观点定位某个观点在文献中的蛛丝马迹
加入知识库完成数据提取,报告撰写等更多高级知识挖掘功能

主要研究问题

  1. 在液体活检中,如何选择适合的光学纳米材料以提高生物标志物的检测灵敏度?
  2. 除了CTC和ctDNA,还有哪些新兴的生物标志物可以通过光学纳米材料进行检测?
  3. 光学纳米材料在液体活检中的应用面临哪些具体的技术挑战,如何克服这些挑战?
  4. 如何评估光学传感器在液体活检中对不同类型生物标志物的检测性能?
  5. 未来光学纳米材料在液体活检中的发展趋势是什么,可能会引入哪些新的技术或材料?

核心洞察

研究背景和目的

液体活检作为一种替代传统组织活检的微创方法,已被引入用于癌症的早期诊断和预后评估。液体活检通过检测血液或其他生物液体中的肿瘤相关生物标志物(如循环肿瘤细胞CTC和循环肿瘤DNA ctDNA),承诺提供更全面的疾病监测。然而,当前液体活检技术仍面临概念和实践上的挑战,尤其是在超灵敏和准确检测稀有生物标志物方面。因此,本研究旨在总结基于光学纳米材料的生物传感器在液体活检中的应用,以期克服现有技术的限制。

主要方法/材料/实验设计

本研究主要采用光学纳米材料(如金属纳米颗粒、量子点、上转换纳米颗粒等)作为生物传感器,进行液体活检标志物的检测。研究的技术路线如下:

Mermaid diagram

关键结果和发现

  1. 生物标志物的分类与浓度:液体活检生物标志物可分为五类,包括蛋白质、肽、ctDNA、miRNA和外泌体。每类标志物的浓度范围各不相同,且在临床样本中具有显著差异。
  2. 检测技术的灵敏度:基于光学纳米材料的传感器显示出优异的灵敏度。例如,利用金属纳米颗粒的表面增强拉曼散射(SERS)技术可以在皮克摩尔至阿摩尔浓度范围内检测肿瘤标志物。
  3. 多重检测能力:许多研究展示了利用纳米材料实现多重标志物的同时检测,提升了液体活检的临床应用潜力。

主要结论/意义/创新性

本研究表明,光学纳米材料在液体活检中的应用具有显著的优势,能够提供高灵敏度和准确度的检测结果。通过优化纳米材料的设计和检测方法,可以有效克服液体活检面临的技术挑战。这为癌症的早期诊断和监测提供了新的可能性,具有重要的临床意义。

研究局限性和未来方向

尽管本研究提供了光学纳米材料在液体活检中的应用潜力,但仍存在以下局限性:

  • 标志物的异质性和稀有性:液体活检生物标志物的稀有性和异质性可能影响检测的准确性。
  • 标准化问题:目前缺乏统一的样本处理和检测标准,导致结果的可重复性差。

未来的研究应集中在以下几个方面:

  • 开发更高效的富集和分离技术,以提高稀有生物标志物的检测灵敏度。
  • 加强对新兴生物标志物的研究,以拓宽液体活检的应用范围。
  • 建立标准化的检测流程,确保临床应用的可靠性和一致性。

参考文献

  1. PMVEMA-coated upconverting nanoparticles for upconversion-linked immunoassay of cardiac troponin. - Oleksandr Shapoval;Julian C Brandmeier;Mykhailo Nahorniak;Viktoriia Oleksa;Ekaterina Makhneva;Hans H Gorris;Zdeněk Farka;Daniel Horák - Talanta (2022)
  2. Carcinoembryonic antigen (CEA) as tumor marker in lung cancer. - M Grunnet;J B Sorensen - Lung cancer (Amsterdam, Netherlands) (2012)
  3. Improving SERS biosensors for the analysis of ovarian cancer-derived small extracellular vesicles. - Long Ngo;Wei Zhang;Su Su Thae Hnit;Yuling Wang - The Analyst (2023)
  4. Tunable and Linker Free Nanogaps in Core-Shell Plasmonic Nanorods for Selective and Quantitative Detection of Circulating Tumor Cells by SERS. - Yang Zhang;Peng Yang;Madathumpady Abubaker Habeeb Muhammed;Shahad K Alsaiari;Basem Moosa;Abdulaziz Almalik;Anjli Kumar;Emilie Ringe;Niveen M Khashab - ACS applied materials & interfaces (2017)
  5. Advances in nanobiosensors during the COVID-19 pandemic and future perspectives for the post-COVID era. - Young Jun Kim;Junhong Min - Nano convergence (2024)
  6. Homogeneous Immunosorbent Assay Based on Single-Particle Enumeration Using Upconversion Nanoparticles for the Sensitive Detection of Cancer Biomarkers. - Xue Li;Lin Wei;Lanlan Pan;Zunyan Yi;Xiao Wang;Zhongju Ye;Lehui Xiao;Hung-Wing Li;Jianfang Wang - Analytical chemistry (2018)
  7. Autoluminescence-Free Prostate-Specific Antigen Detection by Persistent Luminous Nanorods and Au@Ag@SiO2 Nanoparticles. - Yuan Zhao;Fangjie Zheng;Lixia Shi;Han Liu;Wei Ke - ACS applied materials & interfaces (2019)
  8. Direct detection of neuron-specific enolase using a spectrometer-free colorimetric plasmonic biosensor. - Mana Toma;Shinnosuke Namihara;Kotaro Kajikawa - Analytical methods : advancing methods and applications (2023)
  9. Microfluidic Chip-Based Cancer Diagnosis and Prediction of Relapse by Detecting Circulating Tumor Cells and Circulating Cancer Stem Cells. - Hyeon-Yeol Cho;Jin-Ha Choi;Joungpyo Lim;Sang-Nam Lee;Jeong-Woo Choi - Cancers (2021)
  10. Surface modification of silica nanoparticles to reduce aggregation and nonspecific binding. - Rahul P Bagwe;Lisa R Hilliard;Weihong Tan - Langmuir : the ACS journal of surfaces and colloids (2006)

引用本文的文献

  1. Advancements and challenges in triple-negative breast cancer: a comprehensive review of therapeutic and diagnostic strategies. - Nating Xiong;Heming Wu;Zhikang Yu - Frontiers in oncology (2024)
  2. Advances and challenges in the use of liquid biopsy in gynaecological oncology. - Yingfeng Zhang;Libi Tian - Heliyon (2024)
  3. Synthesis and Application of Optical Nanomaterials. - Bong-Hyun Jun - Nanomaterials (Basel, Switzerland) (2024)
  4. Aptamer-Conjugated Multi-Quantum Dot-Embedded Silica Nanoparticles for Lateral Flow Immunoassay. - Kwanghee Yoo;Hye-Seong Cho;Jaehi Kim;Minsup Shin;Jun-Sik Chu;Sohyeon Jang;Han-Joo Bae;Heung Su Jung;Homan Kang;Bong-Hyun Jun - Biosensors (2025)
  5. Antioxidants in cancer therapy mitigating lipid peroxidation without compromising treatment through nanotechnology. - Daniel Ejim Uti;Item Justin Atangwho;Esther Ugo Alum;Emmanuella Ntaobeten;Uket Nta Obeten;Inalegwu Bawa;Samuel A Agada;Catherine Ironya-Ogar Ukam;Godwin Eneji Egbung - Discover nano (2025)
  6. Emerging nanotechnologies and their role in early ovarian cancer detection, diagnosis and interventions. - Mega Obukohwo Oyowvi;Kehinde Henrietta Babawale;Adedeji David Atere;Benneth Ben-Azu - Journal of ovarian research (2025)
  7. Developments in nanotechnology approaches for the treatment of solid tumors. - Jacopo Venturini;Abhijit Chakraborty;Mehmet A Baysal;Apostolia M Tsimberidou - Experimental hematology & oncology (2025)
  8. Nanomaterial-assisted pancreatic cancer theranostics. - Yaqi Liu;Huachun Xu;Shihao Bai;Tianxiang Chen;Xuehua Ma;Jie Lin;Linglin Sun;Changyong Gao;Aiguo Wu;Qiang Li - Regenerative biomaterials (2025)
  9. Role of non-coding RNA-regulated ferroptosis in colorectal cancer. - Yan-Peng Zhao;Jun-Liang Liu;Shuai Wang;Xue Li - Cell death discovery (2025)
  10. Functional Nanomaterials for Advanced Bioelectrode Interfaces: Recent Advances in Disease Detection and Metabolic Monitoring. - Junlong Ma;Siyi Yang;Zhihao Yang;Ziliang He;Zhanhong Du - Sensors (Basel, Switzerland) (2025)

... (5 更多 篇文献)


© 2025 MaltSci 麦伴科研 - 我们用人工智能技术重塑科研