Skip to content

Massively parallel single-cell sequencing of diverse microbial populations.

文献信息

DOI10.1038/s41592-023-02157-7
PMID38233503
期刊Nature methods
影响因子32.1
JCR 分区Q1
发表年份2024
被引次数13
关键词单细胞测序, 微生物群落, 抗生素抗性基因
文献类型Journal Article
ISSN1548-7091
页码228-235
期号21(2)
作者Freeman Lan, Jason Saba, Tyler D Ross, Zhichao Zhou, Katie Krauska, Karthik Anantharaman, Robert Landick, Ophelia S Venturelli

一句话小结

本研究提出了一种新型的液滴靶向扩增子测序(DoTA-seq)方法,用于高通量单细胞基因组测序,以便研究微生物群体中的遗传异质性。通过该方法,我们能够有效追踪人类和小鼠肠道微生物中的抗生素抗性基因及其分类关联,推动了微生物遗传分析的研究进展。

在麦伴科研 (maltsci.com) 搜索更多文献

单细胞测序 · 微生物群落 · 抗生素抗性基因

摘要

单细胞遗传异质性在微生物群体中普遍存在,是微生物生物学的重要方面;然而,我们缺乏一种广泛适用且易于获取的方法来研究微生物群体中的这种异质性。在此,我们展示了一种简单、稳健且可推广的方法,利用简单的液滴微流体设备(液滴靶向扩增子测序;DoTA-seq)进行多样微生物的高通量单细胞靶基因组测序。DoTA-seq作为一个平台,可用于对微生物群体进行多样的单细胞遗传分析实验。通过DoTA-seq,我们展示了同时追踪人类和小鼠肠道微生物群落中超过10种抗生素抗性基因和质粒的流行程度及其分类关联的能力。这一工作流程为多样微生物群体的高通量单细胞测序提供了一个强大且易于获取的平台。

英文摘要

Single-cell genetic heterogeneity is ubiquitous in microbial populations and an important aspect of microbial biology; however, we lack a broadly applicable and accessible method to study this heterogeneity in microbial populations. Here, we show a simple, robust and generalizable method for high-throughput single-cell sequencing of target genetic loci in diverse microbes using simple droplet microfluidics devices (droplet targeted amplicon sequencing; DoTA-seq). DoTA-seq serves as a platform to perform diverse assays for single-cell genetic analysis of microbial populations. Using DoTA-seq, we demonstrate the ability to simultaneously track the prevalence and taxonomic associations of >10 antibiotic-resistance genes and plasmids within human and mouse gut microbial communities. This workflow is a powerful and accessible platform for high-throughput single-cell sequencing of diverse microbial populations.

麦伴智能科研服务

智能阅读回答你对文献的任何问题,帮助理解文献中的复杂图表和公式
定位观点定位某个观点在文献中的蛛丝马迹
加入知识库完成数据提取,报告撰写等更多高级知识挖掘功能

主要研究问题

  1. DoTA-seq方法在不同类型微生物群落中的适用性如何?
  2. 如何评估DoTA-seq在抗生素抗性基因追踪中的有效性?
  3. 在进行单细胞测序时,如何处理微生物群落中的基因组复杂性?
  4. DoTA-seq与传统单细胞测序技术相比,具有哪些优势和局限性?
  5. 在应用DoTA-seq技术时,如何优化微流体装置以提高测序精度?

核心洞察

研究背景和目的

微生物群体中的单细胞遗传异质性普遍存在,是微生物生物学的重要方面。然而,目前缺乏一种广泛适用且易于获取的方法来研究微生物群体中的这种异质性。本研究旨在开发一种简单、稳健且具有普遍适用性的高通量单细胞测序方法,以便在多样化的微生物中研究目标遗传位点。

主要方法/材料/实验设计

本研究采用了一种称为“滴液靶向扩增测序”(DoTA-seq)的新方法,利用简单的滴液微流体设备进行高通量单细胞测序。该方法的关键步骤如下:

Mermaid diagram
  1. 样本准备:收集人类和小鼠肠道微生物群体样本。
  2. 细胞分离:通过微流体技术将单个细胞分离到单独的滴液中。
  3. 滴液生成:利用微流体设备生成包含单细胞的滴液。
  4. 扩增目标基因:在每个滴液中对目标抗生素抗性基因和质粒进行扩增。
  5. 测序:对扩增的DNA进行高通量测序。
  6. 数据分析:对测序数据进行分析,以跟踪抗生素抗性基因和质粒的流行程度及其分类关联。
  7. 结果解读:总结研究发现和意义。

关键结果和发现

  • 使用DoTA-seq,研究者能够同时追踪超过10种抗生素抗性基因和质粒在肠道微生物群落中的分布情况。
  • 该方法成功展示了对人类和小鼠肠道微生物群体的遗传多样性进行高通量分析的能力。

主要结论/意义/创新性

本研究提出的DoTA-seq方法为微生物群体的单细胞遗传分析提供了一个强大且易于获取的平台。其创新性在于:

  • 实现了高通量的单细胞测序,能够深入理解微生物群体中的遗传异质性。
  • 提供了一种可广泛应用于不同微生物种类的研究工具,促进了微生物生态学和抗生素抗性研究的发展。

研究局限性和未来方向

  • 局限性:目前该方法主要集中于抗生素抗性基因的研究,可能无法涵盖所有类型的遗传变异。此外,滴液微流体技术的操作复杂性可能限制其在某些实验室的应用。
  • 未来方向:未来研究可以扩展DoTA-seq方法的应用范围,探索其他重要的遗传特征。同时,改进滴液微流体设备以提高操作的简便性和通用性,将进一步推动该技术的普及和应用。

参考文献

  1. Proteomic Investigation of Tolerant Escherichia coli Populations from Cyclic Antibiotic Treatment. - Jordy Evan Sulaiman;Henry Lam - Journal of proteome research (2020)
  2. A Subset of Polysaccharide Capsules in the Human Symbiont Bacteroides thetaiotaomicron Promote Increased Competitive Fitness in the Mouse Gut. - Nathan T Porter;Pablo Canales;Daniel A Peterson;Eric C Martens - Cell host & microbe (2017)
  3. Sequence changes in the pilus subunit lead to tropism variation of Neisseria gonorrhoeae to human tissue. - A B Jonsson;D Ilver;P Falk;J Pepose;S Normark - Molecular microbiology (1994)
  4. Epigenetic Switch Driven by DNA Inversions Dictates Phase Variation in Streptococcus pneumoniae. - Jing Li;Jing-Wen Li;Zhixing Feng;Juanjuan Wang;Haoran An;Yanni Liu;Yang Wang;Kailing Wang;Xuegong Zhang;Zhun Miao;Wenbo Liang;Robert Sebra;Guilin Wang;Wen-Ching Wang;Jing-Ren Zhang - PLoS pathogens (2016)
  5. Dissecting biological "dark matter" with single-cell genetic analysis of rare and uncultivated TM7 microbes from the human mouth. - Yann Marcy;Cleber Ouverney;Elisabeth M Bik;Tina Lösekann;Natalia Ivanova;Hector Garcia Martin;Ernest Szeto;Darren Platt;Philip Hugenholtz;David A Relman;Stephen R Quake - Proceedings of the National Academy of Sciences of the United States of America (2007)
  6. Insights into the phylogeny and coding potential of microbial dark matter. - Christian Rinke;Patrick Schwientek;Alexander Sczyrba;Natalia N Ivanova;Iain J Anderson;Jan-Fang Cheng;Aaron Darling;Stephanie Malfatti;Brandon K Swan;Esther A Gies;Jeremy A Dodsworth;Brian P Hedlund;George Tsiamis;Stefan M Sievert;Wen-Tso Liu;Jonathan A Eisen;Steven J Hallam;Nikos C Kyrpides;Ramunas Stepanauskas;Edward M Rubin;Philip Hugenholtz;Tanja Woyke - Nature (2013)
  7. Single-cell analysis of multiple invertible promoters reveals differential inversion rates as a strong determinant of bacterial population heterogeneity. - Freeman Lan;Jason Saba;Yili Qian;Tyler Ross;Robert Landick;Ophelia S Venturelli - Science advances (2023)
  8. Prokaryotic single-cell RNA sequencing by in situ combinatorial indexing. - Sydney B Blattman;Wenyan Jiang;Panos Oikonomou;Saeed Tavazoie - Nature microbiology (2020)
  9. Microbial single-cell RNA sequencing by split-pool barcoding. - Anna Kuchina;Leandra M Brettner;Luana Paleologu;Charles M Roco;Alexander B Rosenberg;Alberto Carignano;Ryan Kibler;Matthew Hirano;R William DePaolo;Georg Seelig - Science (New York, N.Y.) (2021)
  10. Single-cell genome sequencing at ultra-high-throughput with microfluidic droplet barcoding. - Freeman Lan;Benjamin Demaree;Noorsher Ahmed;Adam R Abate - Nature biotechnology (2017)

引用本文的文献

  1. Single-cell analysis of multiple invertible promoters reveals differential inversion rates as a strong determinant of bacterial population heterogeneity. - Freeman Lan;Jason Saba;Yili Qian;Tyler Ross;Robert Landick;Ophelia S Venturelli - Science advances (2023)
  2. Integrating evolutionary genomics of forest trees to inform future tree breeding amid rapid climate change. - Jiajun Feng;Xuming Dan;Yangkai Cui;Yi Gong;Minyue Peng;Yupeng Sang;Pär K Ingvarsson;Jing Wang - Plant communications (2024)
  3. AI in microbiome-related healthcare. - Niklas Probul;Zihua Huang;Christina Caroline Saak;Jan Baumbach;Markus List - Microbial biotechnology (2024)
  4. Microbial functional diversity and redundancy: moving forward. - Pierre Ramond;Pierre E Galand;Ramiro Logares - FEMS microbiology reviews (2025)
  5. Bacteroides expand the functional versatility of a conserved transcription factor and transcribed DNA to program capsule diversity. - Jason Saba;Katia Flores;Bailey Marshall;Michael D Engstrom;Yikai Peng;Atharv S Garje;Laurie E Comstock;Robert Landick - Nature communications (2024)
  6. A data-driven modeling framework for mapping genotypes to synthetic microbial community functions. - Yili Qian;Sarvesh D Menon;Nick Quinn-Bohmann;Sean M Gibbons;Ophelia S Venturelli - bioRxiv : the preprint server for biology (2025)
  7. Self-driving laboratories, advanced immunotherapies and five more technologies to watch in 2025. - Michael Eisenstein - Nature (2025)
  8. High throughput single cell metagenomic sequencing with semi-permeable capsules: unraveling microbial diversity at the single-cell level in sewage and fecal microbiomes. - Meilee Ling;Judit Szarvas;Vaida Kurmauskaitė;Vaidotas Kiseliovas;Rapolas Žilionis;Baptiste Avot;Patrick Munk;Frank M Aarestrup - Frontiers in microbiology (2024)
  9. Barcodes based on nucleic acid sequences: Applications and challenges (Review). - Ying Hong Wei;Faquan Lin - Molecular medicine reports (2025)
  10. Microbiome Single Cell Atlases Generated with a Commercial Instrument. - Xiangpeng Li;Linfeng Xu;Benjamin Demaree;Cecilia Noecker;Jordan E Bisanz;Daniel W Weisgerber;Cyrus Modavi;Peter J Turnbaugh;Adam R Abate - Advanced science (Weinheim, Baden-Wurttemberg, Germany) (2025)

... (3 更多 篇文献)


© 2025 MaltSci 麦伴科研 - 我们用人工智能技术重塑科研