Appearance
An in vivo neuroimmune organoid model to study human microglia phenotypes.
文献信息
| DOI | 10.1016/j.cell.2023.04.022 |
|---|---|
| PMID | 37172564 |
| 期刊 | Cell |
| 影响因子 | 42.5 |
| JCR 分区 | Q1 |
| 发表年份 | 2023 |
| 被引次数 | 101 |
| 关键词 | 人类小胶质细胞, 自闭症谱系障碍, 脑类器官, 诱导多能干细胞, 体内小胶质细胞身份 |
| 文献类型 | Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't |
| ISSN | 0092-8674 |
| 页码 | 2111-2126.e20 |
| 期号 | 186(10) |
| 作者 | Simon T Schafer, Abed AlFatah Mansour, Johannes C M Schlachetzki, Monique Pena, Saeed Ghassemzadeh, Lisa Mitchell, Amanda Mar, Daphne Quang, Sarah Stumpf, Irene Santisteban Ortiz, Addison J Lana, Clara Baek, Raghad Zaghal, Christopher K Glass, Axel Nimmerjahn, Fred H Gage |
一句话小结
本研究开发了一种体内异种移植方法,成功构建了血管化的免疫功能完整的人脑类器官(iHBO),并在其中观察到功能成熟的人小胶质细胞(hMGs)展现出与体内细胞相似的特征,能够有效监视脑环境并响应损伤与炎症。该研究为探索人小胶质细胞在健康与疾病中的作用提供了新模型,特别是在大头畸形自闭症患者中的应用前景。
在麦伴科研 (maltsci.com) 搜索更多文献
人类小胶质细胞 · 自闭症谱系障碍 · 脑类器官 · 诱导多能干细胞 · 体内小胶质细胞身份
摘要
小胶质细胞是特化的脑内巨噬细胞,在脑发育、稳态和疾病中发挥着关键作用。然而,迄今为止,模拟人脑环境与小胶质细胞之间相互作用的能力受到严重限制。为了克服这些限制,我们开发了一种体内异种移植的方法,使我们能够研究在生理相关的、血管化的免疫功能完整的人脑类器官(iHBO)模型中发挥作用的功能成熟的人小胶质细胞(hMGs)。我们的数据表明,居住在类器官中的hMGs获得了与其体内对应物非常相似的人类特异性转录组特征。体内双光子成像揭示,hMGs积极参与监视人脑环境,对局部损伤做出反应,并对全身性炎症信号作出响应。最后,我们证明,在此开发的移植iHBO提供了前所未有的机会,以研究健康和疾病中功能性人小胶质细胞表型,并为具有大头畸形的自闭症患者特异性模型中脑环境诱导的免疫反应提供了实验证据。
英文摘要
Microglia are specialized brain-resident macrophages that play crucial roles in brain development, homeostasis, and disease. However, until now, the ability to model interactions between the human brain environment and microglia has been severely limited. To overcome these limitations, we developed an in vivo xenotransplantation approach that allows us to study functionally mature human microglia (hMGs) that operate within a physiologically relevant, vascularized immunocompetent human brain organoid (iHBO) model. Our data show that organoid-resident hMGs gain human-specific transcriptomic signatures that closely resemble their in vivo counterparts. In vivo two-photon imaging reveals that hMGs actively engage in surveilling the human brain environment, react to local injuries, and respond to systemic inflammatory cues. Finally, we demonstrate that the transplanted iHBOs developed here offer the unprecedented opportunity to study functional human microglia phenotypes in health and disease and provide experimental evidence for a brain-environment-induced immune response in a patient-specific model of autism with macrocephaly.
麦伴智能科研服务
主要研究问题
- 在该模型中,如何确保微胶质细胞的功能成熟度与人类大脑环境相匹配?
- 该研究是否考虑了不同疾病状态下微胶质细胞表型的变化,特别是在自闭症患者中?
- 在iHBO模型中,微胶质细胞如何与其他脑细胞类型进行相互作用以影响神经环境?
- 是否有可能利用该模型研究其他类型的神经免疫细胞在大脑疾病中的作用?
- 该研究的结果如何为开发针对神经系统疾病的新疗法提供基础?
核心洞察
研究背景和目的
微胶质细胞是特化的脑内巨噬细胞,在脑发育、稳态和疾病中发挥重要作用。然而,迄今为止,模拟人脑环境与微胶质细胞之间相互作用的能力受到严重限制。本研究旨在开发一种体内异种移植的方法,以研究功能成熟的人类微胶质细胞(hMGs)在生理相关的、血管化的免疫竞争性人脑类器官(iHBO)模型中的作用。
主要方法/材料/实验设计
本研究采用了异种移植技术,创建了一个可以在体内观察人类微胶质细胞的模型。具体实验设计包括以下几个步骤:
- 异种移植模型的建立:创建血管化的免疫竞争性人脑类器官。
- 人类微胶质细胞的获取:从人类来源的细胞中分离并培养微胶质细胞。
- 移植到人脑类器官中:将成熟的hMGs移植到iHBO中。
- 进行体内成像:使用双光子成像技术观察hMGs的活动。
- 评估微胶质细胞功能:通过不同实验观察其对局部损伤和全身炎症信号的反应。
- 分析转录组特征:比较移植后微胶质细胞的转录组与体内相应细胞的特征。
关键结果和发现
- 转录组特征:移植后的hMGs获得了与其体内同源细胞相似的人类特异性转录组特征。
- 功能活性:双光子成像显示hMGs能够主动监测人脑环境,响应局部损伤和全身炎症信号。
- 疾病模型:研究还提供了一个针对具有宏头畸形的自闭症患者的模型,展示了脑环境诱导的免疫反应。
主要结论/意义/创新性
本研究首次展示了在生理相关的人脑类器官中,功能成熟的人类微胶质细胞能够被有效地模拟和研究。这一模型为深入理解人类微胶质细胞在健康和疾病中的角色提供了前所未有的机会,尤其是在研究自闭症等神经发育障碍时的应用潜力。
研究局限性和未来方向
- 局限性:本研究主要集中于特定类型的微胶质细胞和疾病模型,可能无法全面代表所有微胶质细胞的功能。
- 未来方向:建议未来研究可以扩展到不同类型的神经疾病,探索微胶质细胞在其他神经发育和退行性疾病中的作用,并进一步优化人脑类器官模型以更好地模拟复杂的脑环境。
参考文献
- Elevation of tumor necrosis factor-alpha in cerebrospinal fluid of autistic children. - Michael G Chez;Tim Dowling;Pikul B Patel;Pavan Khanna;Matt Kominsky - Pediatric neurology (2007)
- Phenotypic clustering: a novel method for microglial morphology analysis. - Franck Verdonk;Pascal Roux;Patricia Flamant;Laurence Fiette;Fernando A Bozza;Sébastien Simard;Marc Lemaire;Benoit Plaud;Spencer L Shorte;Tarek Sharshar;Fabrice Chrétien;Anne Danckaert - Journal of neuroinflammation (2016)
- Microglia in the cerebral cortex in autism. - Nicole A Tetreault;Atiya Y Hakeem;Sue Jiang;Brian A Williams;Elizabeth Allman;Barbara J Wold;John M Allman - Journal of autism and developmental disorders (2012)
- Quantitative assessment of microglial morphology and density reveals remarkable consistency in the distribution and morphology of cells within the healthy prefrontal cortex of the rat. - Ratchaniporn Kongsui;Sarah B Beynon;Sarah J Johnson;Frederick Rohan Walker - Journal of neuroinflammation (2014)
- Single-nucleus chromatin accessibility and transcriptomic characterization of Alzheimer's disease. - Samuel Morabito;Emily Miyoshi;Neethu Michael;Saba Shahin;Alessandra Cadete Martini;Elizabeth Head;Justine Silva;Kelsey Leavy;Mari Perez-Rosendahl;Vivek Swarup - Nature genetics (2021)
- Human microglia states are conserved across experimental models and regulate neural stem cell responses in chimeric organoids. - Galina Popova;Sarah S Soliman;Chang N Kim;Matthew G Keefe;Kelsey M Hennick;Samhita Jain;Tao Li;Dario Tejera;David Shin;Bryant B Chhun;Christopher S McGinnis;Matthew Speir;Zev J Gartner;Shalin B Mehta;Maximilian Haeussler;Keith B Hengen;Richard R Ransohoff;Xianhua Piao;Tomasz J Nowakowski - Cell stem cell (2021)
- Transplantation of central and peripheral monoamine neurons to the adult rat brain: techniques and conditions for survival. - U Stenevi;A Björklund;N A Svendgaard - Brain research (1976)
- MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data. - Greg Finak;Andrew McDavid;Masanao Yajima;Jingyuan Deng;Vivian Gersuk;Alex K Shalek;Chloe K Slichter;Hannah W Miller;M Juliana McElrath;Martin Prlic;Peter S Linsley;Raphael Gottardo - Genome biology (2015)
- Spatial and temporal heterogeneity of mouse and human microglia at single-cell resolution. - Takahiro Masuda;Roman Sankowski;Ori Staszewski;Chotima Böttcher;Lukas Amann; Sagar;Christian Scheiwe;Stefan Nessler;Patrik Kunz;Geert van Loo;Volker Arnd Coenen;Peter Christoph Reinacher;Anna Michel;Ulrich Sure;Ralf Gold;Dominic Grün;Josef Priller;Christine Stadelmann;Marco Prinz - Nature (2019)
- Slingshot: cell lineage and pseudotime inference for single-cell transcriptomics. - Kelly Street;Davide Risso;Russell B Fletcher;Diya Das;John Ngai;Nir Yosef;Elizabeth Purdom;Sandrine Dudoit - BMC genomics (2018)
引用本文的文献
- CRISPRi-based screens in iAssembloids to elucidate neuron-glia interactions. - Emmy Li;Camila Benitez;Steven C Boggess;Mark Koontz;Indigo V L Rose;Delsy Martinez;Nina Draeger;Olivia M Teter;Avi J Samelson;Na'im Pierce;Erik M Ullian;Martin Kampmann - bioRxiv : the preprint server for biology (2024)
- Context matters: hPSC-derived microglia thrive in a humanized brain environment in vivo. - Jonas Cerneckis;Yanhong Shi - Cell stem cell (2023)
- Genetics of human brain development. - Yi Zhou;Hongjun Song;Guo-Li Ming - Nature reviews. Genetics (2024)
- Replacing microglia to treat Alzheimer's disease. - Peng Jiang;Mengmeng Jin - Cell stem cell (2023)
- Microglial contribution to the pathology of neurodevelopmental disorders in humans. - Rugile Matuleviciute;Elizabeth T Akinluyi;Tim A O Muntslag;Jennifer M Dewing;Katherine R Long;Anthony C Vernon;Marie-Eve Tremblay;David A Menassa - Acta neuropathologica (2023)
- Noteworthy perspectives on microglia in neuropsychiatric disorders. - Hongrui Zhu;Ao Guan;Jiayuan Liu;Li Peng;Zhi Zhang;Sheng Wang - Journal of neuroinflammation (2023)
- Brain organoids for hypoxic-ischemic studies: from bench to bedside. - Romane Gaston-Breton;Auriane Maïza Letrou;Rifat Hamoudi;Barbara S Stonestreet;Aloïse Mabondzo - Cellular and molecular life sciences : CMLS (2023)
- [Nature and immune mechanisms of mental illnesses]. - Josef Priller;Simon Schäfer;Shima Safaiyan - Der Nervenarzt (2023)
- Human iPSC-derived glia models for the study of neuroinflammation. - Nina Stöberl;Emily Maguire;Elisa Salis;Bethany Shaw;Hazel Hall-Roberts - Journal of neuroinflammation (2023)
- iPS-cell-derived microglia promote brain organoid maturation via cholesterol transfer. - Dong Shin Park;Tatsuya Kozaki;Satish Kumar Tiwari;Marco Moreira;Ahad Khalilnezhad;Federico Torta;Nicolas Olivié;Chung Hwee Thiam;Oniko Liani;Aymeric Silvin;Wint Wint Phoo;Liang Gao;Alexander Triebl;Wai Kin Tham;Leticia Gonçalves;Wan Ting Kong;Sethi Raman;Xiao Meng Zhang;Garett Dunsmore;Charles Antoine Dutertre;Salanne Lee;Jia Min Ong;Akhila Balachander;Shabnam Khalilnezhad;Josephine Lum;Kaibo Duan;Ze Ming Lim;Leonard Tan;Ivy Low;Kagistia Hana Utami;Xin Yi Yeo;Sylvaine Di Tommaso;Jean-William Dupuy;Balazs Varga;Ragnhildur Thora Karadottir;Mufeeda Changaramvally Madathummal;Isabelle Bonne;Benoit Malleret;Zainab Yasin Binte;Ngan Wei Da;Yingrou Tan;Wei Jie Wong;Jinqiu Zhang;Jinmiao Chen;Radoslaw M Sobota;Shanshan W Howland;Lai Guan Ng;Frédéric Saltel;David Castel;Jacques Grill;Veronique Minard;Salvatore Albani;Jerry K Y Chan;Morgane Sonia Thion;Sang Yong Jung;Markus R Wenk;Mahmoud A Pouladi;Claudia Pasqualini;Veronique Angeli;Olivier N F Cexus;Florent Ginhoux - Nature (2023)
... (91 更多 篇文献)
© 2025 MaltSci 麦伴科研 - 我们用人工智能技术重塑科研
