Skip to content

Towards a better understanding of diabetes mellitus using organoid models.

文献信息

DOI10.1038/s41574-022-00797-x
PMID36670309
期刊Nature reviews. Endocrinology
影响因子40.0
JCR 分区Q1
发表年份2023
被引次数35
关键词胰岛模型, 糖尿病, 类器官, 多脏器疾病
文献类型Journal Article, Review
ISSN1759-5029
页码232-248
期号19(4)
作者Belin Selcen Beydag-Tasöz, Siham Yennek, Anne Grapin-Botton

一句话小结

本研究探讨了类器官模型在糖尿病研究中的应用,强调其在模拟人类胰腺及其他靶器官的功能和疾病反应方面的重要性。通过结合多种组织的类器官与生物工程,未来有望建立更全面的糖尿病模型,以深入理解这一多脏器疾病。

在麦伴科研 (maltsci.com) 搜索更多文献

胰岛模型 · 糖尿病 · 类器官 · 多脏器疾病

摘要

我们对糖尿病的理解受益于临床研究与模型生物和细胞系的结合。针对多种组织的类器官模型作为一种新兴工具,使得研究糖尿病成为可能。类器官模型的应用包括研究人类胰腺细胞的发育、胰腺生理、靶器官对胰腺激素的反应,以及葡萄糖毒性如何影响血管、视网膜、肾脏和神经等组织。类器官可以来源于人类组织细胞或多能干细胞,能够产生模拟人类器官的人类细胞集合。目前,已经有许多与糖尿病相关的类器官模型可用,但相关的研究仍然较少。我们讨论了为胰腺、肝脏、肾脏、神经和血管开发的模型,它们如何补充其他模型,以及它们的局限性。此外,考虑到糖尿病是一个多脏器疾病,我们强调了类器官与生物工程领域的结合将提供综合性模型的潜力。

英文摘要

Our understanding of diabetes mellitus has benefited from a combination of clinical investigations and work in model organisms and cell lines. Organoid models for a wide range of tissues are emerging as an additional tool enabling the study of diabetes mellitus. The applications for organoid models include studying human pancreatic cell development, pancreatic physiology, the response of target organs to pancreatic hormones and how glucose toxicity can affect tissues such as the blood vessels, retina, kidney and nerves. Organoids can be derived from human tissue cells or pluripotent stem cells and enable the production of human cell assemblies mimicking human organs. Many organ mimics relevant to diabetes mellitus are already available, but only a few relevant studies have been performed. We discuss the models that have been developed for the pancreas, liver, kidney, nerves and vasculature, how they complement other models, and their limitations. In addition, as diabetes mellitus is a multi-organ disease, we highlight how a merger between the organoid and bioengineering fields will provide integrative models.

麦伴智能科研服务

智能阅读回答你对文献的任何问题,帮助理解文献中的复杂图表和公式
定位观点定位某个观点在文献中的蛛丝马迹
加入知识库完成数据提取,报告撰写等更多高级知识挖掘功能

主要研究问题

  1. 在使用类器官模型研究糖尿病时,如何评估这些模型的有效性和准确性?
  2. 类器官模型在研究糖尿病相关并发症(如视网膜病变和肾病)方面的优势是什么?
  3. 如何将类器官技术与生物工程结合,以便更好地模拟糖尿病的多脏器影响?
  4. 针对不同类型的糖尿病,类器官模型的应用是否存在差异?如果有,具体表现在哪些方面?
  5. 在未来的研究中,类器官模型可能如何推动糖尿病治疗的新策略或药物开发?

核心洞察

研究背景和目的

糖尿病是一种复杂的多脏器疾病,其研究依赖于临床调查以及模型生物和细胞系的工作。近年来,器官样本(organoid)模型作为一种新兴工具,正在为糖尿病的研究提供新的视角和方法。本文旨在探讨器官样本模型在糖尿病研究中的应用,包括胰腺细胞的发育、胰腺生理、靶器官对胰腺激素的反应,以及葡萄糖毒性对血管、视网膜、肾脏和神经等组织的影响。

主要方法/材料/实验设计

器官样本模型的构建主要包括以下几个步骤:

Mermaid diagram
  1. 组织来源选择:可以选择人类组织细胞或多能干细胞作为来源。
  2. 细胞获取:从选定的组织中提取细胞。
  3. 细胞培养:在适当的培养条件下扩增细胞。
  4. 器官样本构建:通过特定的培养技术,构建模拟人类器官的器官样本。
  5. 功能测试与表型分析:评估器官样本的功能和表型特征。
  6. 数据分析与结果验证:对实验结果进行统计分析和验证。

关键结果和发现

  • 目前已有多种与糖尿病相关的器官样本模型可用,涵盖胰腺、肝脏、肾脏、神经和血管等。
  • 这些模型能够有效模拟人类器官的功能,提供对糖尿病相关病理过程的深入理解。
  • 尽管器官样本模型在糖尿病研究中显示出巨大潜力,但相关的研究数量仍然较少,尚需进一步探索。

主要结论/意义/创新性

器官样本模型为糖尿病的研究提供了新的平台,能够在更接近生理条件的环境中研究疾病机制。这些模型不仅可以用于基础研究,还可能为新疗法的开发提供有价值的线索。结合生物工程技术,可以进一步提升器官样本模型的功能和应用范围,为糖尿病的多脏器影响提供综合性的研究工具。

研究局限性和未来方向

  • 局限性:当前的器官样本模型研究数量有限,部分模型在功能和结构上可能无法完全模拟真实器官的复杂性。
  • 未来方向
    • 加强器官样本模型与生物工程的结合,开发更为复杂和功能完善的模型。
    • 扩大不同类型糖尿病(如1型和2型糖尿病)的研究,以探讨其多脏器病理机制。
    • 推动器官样本模型在药物筛选和个性化医疗中的应用。

通过以上研究,可以为糖尿病的治疗和管理提供新的思路和方法。

参考文献

  1. Treatment of type 2 diabetes: challenges, hopes, and anticipated successes. - Michael A Nauck;Jakob Wefers;Juris J Meier - The lancet. Diabetes & endocrinology (2021)
  2. The hope and the hype of organoid research. - Meritxell Huch;Juergen A Knoblich;Matthias P Lutolf;Alfonso Martinez-Arias - Development (Cambridge, England) (2017)
  3. Building consensus on definition and nomenclature of hepatic, pancreatic, and biliary organoids. - Ary Marsee;Floris J M Roos;Monique M A Verstegen; ;Helmuth Gehart;Eelco de Koning;Frédéric Lemaigre;Stuart J Forbes;Weng Chuan Peng;Meritxell Huch;Takanori Takebe;Ludovic Vallier;Hans Clevers;Luc J W van der Laan;Bart Spee - Cell stem cell (2021)
  4. Diabetes through a 3D lens: organoid models. - Anastasia Tsakmaki;Patricia Fonseca Pedro;Gavin A Bewick - Diabetologia (2020)
  5. Spontaneous reassociation of dispersed adult rat pancreatic islet cells into aggregates with three-dimensional architecture typical of native islets. - P A Halban;S L Powers;K L George;S Bonner-Weir - Diabetes (1987)
  6. Controlled aggregation of primary human pancreatic islet cells leads to glucose-responsive pseudoislets comparable to native islets. - Janneke Hilderink;Siebe Spijker;Françoise Carlotti;Lydia Lange;Marten Engelse;Clemens van Blitterswijk;Eelco de Koning;Marcel Karperien;Aart van Apeldoorn - Journal of cellular and molecular medicine (2015)
  7. Advances Toward Engineering Functionally Mature Human Pluripotent Stem Cell-Derived β Cells. - Leonardo Velazco-Cruz;Madeleine M Goedegebuure;Jeffrey R Millman - Frontiers in bioengineering and biotechnology (2020)
  8. Strategies for durable β cell replacement in type 1 diabetes. - Todd M Brusko;Holger A Russ;Cherie L Stabler - Science (New York, N.Y.) (2021)
  9. hPSC-derived organoids: models of human development and disease. - Tristan Frum;Jason R Spence - Journal of molecular medicine (Berlin, Germany) (2021)
  10. Understanding the Long-Lasting Effects of Fetal Nutrient Restriction versus Exposure to an Obesogenic Diet on Islet-Cell Mass and Function. - Stephanie E O'Hara;Kelly M Gembus;Lisa M Nicholas - Metabolites (2021)

引用本文的文献

  1. Rodent models to study type 1 and type 2 diabetes induced human diabetic nephropathy. - Amit Talukdar;Mandira Basumatary - Molecular biology reports (2023)
  2. The role of organoids in cancer research. - Zhen Fang;Peijuan Li;Fengying Du;Liang Shang;Leping Li - Experimental hematology & oncology (2023)
  3. Understanding the Role of the Gut Microbiome in Diabetes and Therapeutics Targeting Leaky Gut: A Systematic Review. - Aishwarya Sadagopan;Anas Mahmoud;Maha Begg;Mawada Tarhuni;Monique Fotso;Natalie A Gonzalez;Raghavendra R Sanivarapu;Usama Osman;Abishek Latha Kumar;Lubna Mohammed - Cureus (2023)
  4. Targeted Gene Silencing by Using GapmeRs in Differentiating Human-Induced Pluripotent Stem Cells (hiPSC) Toward Pancreatic Progenitors. - Lucas Unger;Luiza Ghila;Simona Chera - Methods in molecular biology (Clifton, N.J.) (2024)
  5. Current advancement in the preclinical models used for the assessment of diabetic neuropathy. - Tanishk Saini;Papiya Mitra Mazumder - Naunyn-Schmiedeberg's archives of pharmacology (2024)
  6. Pump-Less, Recirculating Organ-on-Chip (rOoC) Platform to Model the Metabolic Crosstalk between Islets and Liver. - Aleksandra Aizenshtadt;Chencheng Wang;Shadab Abadpour;Pedro Duarte Menezes;Ingrid Wilhelmsen;Andrea Dalmao-Fernandez;Justyna Stokowiec;Alexey Golovin;Mads Johnsen;Thomas M D Combriat;Hanne Røberg-Larsen;Nikolaj Gadegaard;Hanne Scholz;Mathias Busek;Stefan J K Krauss - Advanced healthcare materials (2024)
  7. Revolutionizing biomedical research: The imperative need for heart-kidney-connected organoids. - Sun-Sook Song;Hun-Jun Park;Yong Kyun Kim;Sun-Woong Kang - APL bioengineering (2024)
  8. On the limits of 16S rRNA gene-based metagenome prediction and functional profiling. - Monica Steffi Matchado;Malte Rühlemann;Sandra Reitmeier;Tim Kacprowski;Fabian Frost;Dirk Haller;Jan Baumbach;Markus List - Microbial genomics (2024)
  9. Advances in secondary prevention mechanisms of macrovascular complications in type 2 diabetes mellitus patients: a comprehensive review. - Huifang Guan;Jiaxing Tian;Ying Wang;Ping Niu;Yuxin Zhang;Yanjiao Zhang;Xinyi Fang;Runyu Miao;Ruiyang Yin;Xiaolin Tong - European journal of medical research (2024)
  10. Advanced 3D imaging and organoid bioprinting for biomedical research and therapeutic applications. - Sushila Maharjan;Chenshuo Ma;Bibhor Singh;Heemin Kang;Gorka Orive;Junjie Yao;Yu Shrike Zhang - Advanced drug delivery reviews (2024)

... (25 更多 篇文献)


© 2025 MaltSci 麦伴科研 - 我们用人工智能技术重塑科研