Skip to content

Geometric engineering of organoid culture for enhanced organogenesis in a dish.

文献信息

DOI10.1038/s41592-022-01643-8
PMID36280722
期刊Nature methods
影响因子32.1
JCR 分区Q1
发表年份2022
被引次数27
关键词器官oid培养, 干细胞悬液, 炎症性肠病, 单细胞RNA测序, 血管化
文献类型Journal Article, Research Support, N.I.H., Extramural, Research Support, U.S. Gov't, Non-P.H.S., Research Support, Non-U.S. Gov't
ISSN1548-7091
页码1449-1460
期号19(11)
作者Sunghee Estelle Park, Shawn Kang, Jungwook Paek, Andrei Georgescu, Jeehan Chang, Alex Yoon Yi, Benjamin J Wilkins, Tatiana A Karakasheva, Kathryn E Hamilton, Dan Dongeun Huh

一句话小结

本研究提出了一种简单且可扩展的方法,通过重新设计类器官培养配置,实现了干细胞悬液转化为长期生长的类器官阵列,显著加速了肠道类器官的生产并增强其成熟度。该技术不仅成功再现了炎症性肠病(IBD)的关键病理特征,还为工程化更真实的类器官结构提供了一个可立即部署的平台,具有重要的应用潜力。

在麦伴科研 (maltsci.com) 搜索更多文献

器官oid培养 · 干细胞悬液 · 炎症性肠病 · 单细胞RNA测序 · 血管化

摘要

在这里,我们介绍了一种简单且可扩展的工程方法,以促进类器官的长期发展和成熟。我们重新设计了传统类器官培养的配置,开发了一个平台,将单次注射的干细胞悬液转化为径向排列的类器官阵列,这些类器官可以在无需传代的情况下维持较长时间的生长。利用该系统,我们展示了肠道类器官的加速生产,并显著增强了其结构和功能的成熟度,同时这些类器官能够持续发展超过4周。此外,我们呈现了一种来源于患者的炎症性肠病(IBD)类器官模型,并通过单细胞RNA测序对其进行研究,以证明其能够再现IBD的关键病理特征。最后,我们描述了将我们的方法扩展到工程化的血管化、可灌注的人类肠道类器官,这些类器官可用于模拟IBD中的先天免疫反应。这项工作提供了一种可以立即部署的平台技术,以工程化更真实的类器官结构于培养皿中。

英文摘要

Here, we introduce a facile, scalable engineering approach to enable long-term development and maturation of organoids. We have redesigned the configuration of conventional organoid culture to develop a platform that converts single injections of stem cell suspensions to radial arrays of organoids that can be maintained for extended periods without the need for passaging. Using this system, we demonstrate accelerated production of intestinal organoids with significantly enhanced structural and functional maturity, and their continuous development for over 4 weeks. Furthermore, we present a patient-derived organoid model of inflammatory bowel disease (IBD) and its interrogation using single-cell RNA sequencing to demonstrate its ability to reproduce key pathological features of IBD. Finally, we describe the extension of our approach to engineer vascularized, perfusable human enteroids, which can be used to model innate immune responses in IBD. This work provides an immediately deployable platform technology toward engineering more realistic organ-like structures in a dish.

麦伴智能科研服务

智能阅读回答你对文献的任何问题,帮助理解文献中的复杂图表和公式
定位观点定位某个观点在文献中的蛛丝马迹
加入知识库完成数据提取,报告撰写等更多高级知识挖掘功能

主要研究问题

  1. 如何进一步优化这种几何工程方法,以提高其他类型器官类器官的发育和成熟?
  2. 在这种新的类器官培养平台中,是否可以引入其他细胞类型以增强器官的功能性?
  3. 该平台如何与现有的生物材料结合使用,以促进类器官的长期培养和功能维持?
  4. 在患者来源的类器官模型中,如何利用基因编辑技术进一步研究IBD的病理机制?
  5. 这种工程方法是否可以扩展到其他疾病模型中,以评估不同治疗策略的有效性?

核心洞察

研究背景和目的

随着再生医学和组织工程的发展,器官类器官(organoids)在疾病建模、药物筛选和再生医学中展现出广泛的应用潜力。然而,传统的类器官培养方法存在维护困难、培养时间长等问题。本研究旨在开发一种简便且可扩展的工程方法,以实现类器官的长期发育和成熟,特别是在炎症性肠病(IBD)模型中的应用。

主要方法/材料/实验设计

本研究设计了一种新的类器官培养平台,通过单次注射干细胞悬液,形成径向排列的类器官阵列,从而避免了常规的传代操作。具体步骤如下:

Mermaid diagram

关键结果和发现

  1. 类器官培养平台:通过新平台,成功形成并维持径向排列的类器官阵列,显著延长了类器官的培养时间。
  2. 功能成熟度:所生产的肠道类器官在结构和功能上表现出明显的成熟,持续发育超过4周。
  3. IBD模型:构建的患者来源类器官模型能够有效重现IBD的主要病理特征。
  4. 血管化人肠器官:进一步扩展了该方法,开发出可灌注的血管化人肠器官,能够模拟IBD中的免疫反应。

主要结论/意义/创新性

本研究提供了一种可立即应用的平台技术,为在体外工程更真实的类器官结构奠定了基础。通过改进类器官的培养方法,不仅加速了类器官的生产过程,还提升了其成熟度,具有重要的临床应用潜力,特别是在疾病模型和药物开发方面。此外,该研究展示了如何利用单细胞RNA测序技术深入分析类器官的功能和病理特征,为未来的研究提供了新的思路。

研究局限性和未来方向

尽管本研究在类器官的生产和应用方面取得了显著进展,但仍存在一些局限性:

  • 样本多样性:当前的IBD模型仅基于特定患者来源的样本,未来需要扩展到更多不同类型的IBD患者,以提高模型的普遍性。
  • 功能验证:尽管展示了类器官的成熟度,但在功能上与真实组织的相似性仍需进一步验证。

未来的研究方向可以集中在以下几个方面:

  1. 扩大患者来源样本库,提升模型的代表性。
  2. 探索其他类型疾病的类器官模型,拓展该技术的应用范围。
  3. 结合高通量筛选技术,优化类器官的功能和治疗潜力。

参考文献

  1. Intestinal epithelial cells: regulators of barrier function and immune homeostasis. - Lance W Peterson;David Artis - Nature reviews. Immunology (2014)
  2. Molecular mechanisms of calcium signaling in the modulation of small intestinal ion transports and bicarbonate secretion. - Xin Yang;Guorong Wen;Biguang Tuo;Fenglian Zhang;Hanxing Wan;Jialin He;Shiming Yang;Hui Dong - Oncotarget (2018)
  3. Bioengineered Systems and Designer Matrices That Recapitulate the Intestinal Stem Cell Niche. - Yuli Wang;Raehyun Kim;Samuel S Hinman;Bailey Zwarycz;Scott T Magness;Nancy L Allbritton - Cellular and molecular gastroenterology and hepatology (2018)
  4. Single-cell transcriptome analysis reveals differential nutrient absorption functions in human intestine. - Yalong Wang;Wanlu Song;Jilian Wang;Ting Wang;Xiaochen Xiong;Zhen Qi;Wei Fu;Xuerui Yang;Ye-Guang Chen - The Journal of experimental medicine (2020)
  5. Paneth Cells Respond to Inflammation and Contribute to Tissue Regeneration by Acquiring Stem-like Features through SCF/c-Kit Signaling. - Mark Schmitt;Matthias Schewe;Andrea Sacchetti;Danny Feijtel;Wesley S van de Geer;Miriam Teeuwssen;Hein F Sleddens;Rosalie Joosten;Martin E van Royen;Harmen J G van de Werken;Johan van Es;Hans Clevers;Riccardo Fodde - Cell reports (2018)
  6. Development-on-chip: in vitro neural tube patterning with a microfluidic device. - Christopher J Demers;Prabakaran Soundararajan;Phaneendra Chennampally;Gregory A Cox;James Briscoe;Scott D Collins;Rosemary L Smith - Development (Cambridge, England) (2016)
  7. Cytoskeletal Organization and Cell Polarity in the Pathogenesis of Crohn's Disease. - Chengcen Guo;Jun Shen - Clinical reviews in allergy & immunology (2021)
  8. A bioengineered niche promotes in vivo engraftment and maturation of pluripotent stem cell derived human lung organoids. - Briana R Dye;Priya H Dedhia;Alyssa J Miller;Melinda S Nagy;Eric S White;Lonnie D Shea;Jason R Spence - eLife (2016)
  9. Growing self-organizing mini-guts from a single intestinal stem cell: mechanism and applications. - Toshiro Sato;Hans Clevers - Science (New York, N.Y.) (2013)
  10. Organoid-based modeling of intestinal development, regeneration, and repair. - Joep Sprangers;Irene C Zaalberg;Madelon M Maurice - Cell death and differentiation (2021)

引用本文的文献

  1. Suspended hydrogel culture as a method to scale up intestinal organoids. - Julia Y Co;Jessica A Klein;Serah Kang;Kimberly A Homan - Scientific reports (2023)
  2. Exploring New Dimensions of Tumor Heterogeneity: The Application of Single Cell Analysis to Organoid-Based 3D In Vitro Models. - Natalie Landon-Brace;Nancy T Li;Alison P McGuigan - Advanced healthcare materials (2023)
  3. Fibrin Stiffness Regulates Phenotypic Plasticity of Metastatic Breast Cancer Cells. - Maria Heilala;Arttu Lehtonen;Ossi Arasalo;Aino Peura;Juho Pokki;Olli Ikkala; Nonappa;Juha Klefström;Pauliina M Munne - Advanced healthcare materials (2023)
  4. Setting standards for stem cells. - Nature methods (2023)
  5. Articular cartilage repair biomaterials: strategies and applications. - Mingkai Wang;Yan Wu;Guangfeng Li;Qiushui Lin;Wencai Zhang;Han Liu;Jiacan Su - Materials today. Bio (2024)
  6. Breast organoid suspension cultures maintain long-term estrogen receptor expression and responsiveness. - Joan Brugge;Kung-Chi Chang;Francesca Silvestri;Michael Olipant;M Angie Martinez-Gakidis;Dennis Orgill;Judy Garber;Deborah Dillon - Research square (2024)
  7. Optimization of Vascularized Intestinal Organoid Model. - Zhang Wen;Mariabelen Orduno;Zixie Liang;Xiangyu Gong;Michael Mak - Advanced healthcare materials (2024)
  8. Pharmacological Approaches to Hearing Loss. - Christopher R Cederroth;Jonas Dyhrfjeld-Johnsen;Barbara Canlon - Pharmacological reviews (2024)
  9. Intestinal organ chips for disease modelling and personalized medicine. - Alican Özkan;Nina Teresa LoGrande;Jessica F Feitor;Girija Goyal;Donald E Ingber - Nature reviews. Gastroenterology & hepatology (2024)
  10. Scalable production of uniform and mature organoids in a 3D geometrically-engineered permeable membrane. - Dohui Kim;Hyeonji Lim;Jaeseung Youn;Tae-Eun Park;Dong Sung Kim - Nature communications (2024)

... (17 更多 篇文献)


© 2025 MaltSci 麦伴科研 - 我们用人工智能技术重塑科研