Skip to content

Posttranslational control of lipogenesis in the tumor microenvironment.

文献信息

DOI10.1186/s13045-022-01340-1
PMID36038892
期刊Journal of hematology & oncology
影响因子40.4
JCR 分区Q1
发表年份2022
被引次数18
关键词癌症, 脂质代谢重编程, 后转录修饰, 肿瘤微环境
文献类型Journal Article, Review, Research Support, Non-U.S. Gov't
ISSN1756-8722
页码120
期号15(1)
作者Yahui Zhu, Xingrong Lin, Xiaojun Zhou, Edward V Prochownik, Fubing Wang, Youjun Li

一句话小结

本文探讨了癌细胞在肿瘤微环境中脂质代谢的重编程,强调了脂质代谢相关酶的翻译后修饰对异常代谢行为的影响,尤其是在侵袭性肿瘤中。研究揭示了这些修饰如何促进肿瘤的进展,为理解癌症代谢提供了重要的理论基础和潜在的治疗靶点。

在麦伴科研 (maltsci.com) 搜索更多文献

癌症 · 脂质代谢重编程 · 后转录修饰 · 肿瘤微环境

摘要

癌细胞在肿瘤微环境中的代谢重编程通常是对营养、翻译和增殖需求增加的反应。脂质代谢的变化是肿瘤进展的一个标志,常见于预后不良的侵袭性肿瘤。导致这些异常代谢行为的因素包括脂质代谢相关酶的翻译后修饰(PTMs)及其他可能影响其活性和/或亚细胞定位的因素。本文综述了这些翻译后修饰的作用,特别是它们如何促进癌症脂质代谢的重构,尤其是在肿瘤微环境的背景下。

英文摘要

Metabolic reprogramming of cancer cells within the tumor microenvironment typically occurs in response to increased nutritional, translation and proliferative demands. Altered lipid metabolism is a marker of tumor progression that is frequently observed in aggressive tumors with poor prognosis. Underlying these abnormal metabolic behaviors are posttranslational modifications (PTMs) of lipid metabolism-related enzymes and other factors that can impact their activity and/or subcellular localization. This review focuses on the roles of these PTMs and specifically on how they permit the re-wiring of cancer lipid metabolism, particularly within the context of the tumor microenvironment.

麦伴智能科研服务

智能阅读回答你对文献的任何问题,帮助理解文献中的复杂图表和公式
定位观点定位某个观点在文献中的蛛丝马迹
加入知识库完成数据提取,报告撰写等更多高级知识挖掘功能

主要研究问题

  1. 在肿瘤微环境中,哪些特定的翻译后修饰对脂质代谢相关酶的活性影响最大?
  2. 如何评估肿瘤微环境中脂质代谢异常与肿瘤进展之间的具体关系?
  3. 其他类型的细胞(如免疫细胞)在肿瘤微环境中对脂质代谢的影响是什么?
  4. 不同类型的肿瘤是否表现出不同的脂质代谢翻译后修饰模式?
  5. 如何通过靶向翻译后修饰来开发新的抗肿瘤治疗策略?

核心洞察

研究背景和目的

癌细胞在肿瘤微环境中的代谢重编程通常是为了应对营养、转录和增殖需求的增加。脂质代谢的改变是肿瘤进展的标志,尤其在预后较差的侵袭性肿瘤中更为明显。本文综述了与脂质代谢相关的酶及其后转录修饰(PTMs)在肿瘤微环境中的作用,探讨其如何重塑癌症脂质代谢。

主要方法/材料/实验设计

研究主要通过文献回顾的方式,分析脂质代谢的机制及其在肿瘤中的功能,重点关注后转录修饰对脂质代谢酶的影响。研究涉及以下几个关键步骤:

Mermaid diagram
  1. 文献回顾:收集与肿瘤相关的脂质代谢研究。
  2. 脂质代谢概述:探讨脂质合成、摄取、储存和分泌的基本机制。
  3. 肿瘤微环境中的脂质代谢:分析肿瘤细胞如何利用脂质代谢以促进生长和转移。
  4. 后转录修饰机制:讨论PTMs如何影响脂质代谢酶的活性和定位。
  5. 靶向脂质代谢的治疗策略:评估针对脂质代谢的潜在治疗干预。

关键结果和发现

  • 脂质代谢重编程:肿瘤细胞在代谢上依赖于脂质的合成和外源性脂质的摄取,以支持其快速增殖。
  • 后转录修饰的作用:PTMs如磷酸化、乙酰化和泛素化等对脂质代谢酶的功能和稳定性有显著影响。例如,AMPK通过磷酸化抑制ACC的活性,降低脂质合成。
  • 肿瘤微环境的影响:肿瘤微环境中的长链脂肪酸积累促进了T细胞的分化和活化,但过量的脂质也导致了T细胞的功能失调。

主要结论/意义/创新性

本文强调了肿瘤微环境中脂质代谢重编程的重要性及其对肿瘤进展的影响。通过深入理解PTMs在脂质代谢中的作用,可以为癌症治疗提供新的靶点和策略。此外,靶向脂质代谢的药物开发可能成为未来癌症治疗的有效方法。

研究局限性和未来方向

  • 局限性:当前的研究主要基于文献综述,缺乏实验数据支持。对PTMs的具体机制和影响尚需更多实验证实。
  • 未来方向:未来研究应集中在脂质代谢的动态调控机制上,探索如何通过调节PTMs来改善癌症治疗效果。此外,结合代谢组学和蛋白质PTM组学的方法可能会提供新的生物标志物用于癌症的早期诊断和预后评估。

参考文献

  1. The role of deubiquitinating enzymes in apoptosis. - Suresh Ramakrishna;Bharathi Suresh;Kwang-Hyun Baek - Cellular and molecular life sciences : CMLS (2011)
  2. Fatty acid transport protein 2 reprograms neutrophils in cancer. - Filippo Veglia;Vladimir A Tyurin;Maria Blasi;Alessandra De Leo;Andrew V Kossenkov;Laxminarasimha Donthireddy;Tsun Ki Jerrick To;Zach Schug;Subhasree Basu;Fang Wang;Emanuela Ricciotti;Concetta DiRusso;Maureen E Murphy;Robert H Vonderheide;Paul M Lieberman;Charles Mulligan;Brian Nam;Neil Hockstein;Gregory Masters;Michael Guarino;Cindy Lin;Yulia Nefedova;Paul Black;Valerian E Kagan;Dmitry I Gabrilovich - Nature (2019)
  3. Human Oncogenic Herpesvirus and Post-translational Modifications - Phosphorylation and SUMOylation. - Pei-Ching Chang;Mel Campbell;Erle S Robertson - Frontiers in microbiology (2016)
  4. Phosphorylation status at Smad3 linker region modulates transforming growth factor-β-induced epithelial-mesenchymal transition and cancer progression. - Akira Ooshima;Jinah Park;Seong-Jin Kim - Cancer science (2019)
  5. Mechanisms and regulation of cholesterol homeostasis. - Jie Luo;Hongyuan Yang;Bao-Liang Song - Nature reviews. Molecular cell biology (2020)
  6. Navigating metabolic pathways to enhance antitumour immunity and immunotherapy. - Xiaoyun Li;Mathias Wenes;Pedro Romero;Stanley Ching-Cheng Huang;Sarah-Maria Fendt;Ping-Chih Ho - Nature reviews. Clinical oncology (2019)
  7. The Tumor Microenvironment Innately Modulates Cancer Progression. - Dominique C Hinshaw;Lalita A Shevde - Cancer research (2019)
  8. Blocking immunoinhibitory receptor LILRB2 reprograms tumor-associated myeloid cells and promotes antitumor immunity. - Hui-Ming Chen;William van der Touw;Yuan Shuo Wang;Kyeongah Kang;Sunny Mai;Jilu Zhang;Dayanira Alsina-Beauchamp;James A Duty;Sathish Kumar Mungamuri;Bin Zhang;Thomas Moran;Richard Flavell;Stuart Aaronson;Hong-Ming Hu;Hisashi Arase;Suresh Ramanathan;Raja Flores;Ping-Ying Pan;Shu-Hsia Chen - The Journal of clinical investigation (2018)
  9. Inhibition of the sterol regulatory element-binding protein pathway suppresses hepatocellular carcinoma by repressing inflammation in mice. - Na Li;Zhang-Sen Zhou;Yang Shen;Jie Xu;Hong-Hua Miao;Ying Xiong;Feng Xu;Bo-Liang Li;Jie Luo;Bao-Liang Song - Hepatology (Baltimore, Md.) (2017)
  10. Fatostatin induces pro- and anti-apoptotic lipid accumulation in breast cancer. - Viktor Brovkovych;Yasir Izhar;Jeanne M Danes;Oleskii Dubrovskyi;Isin T Sakallioglu;Lauren M Morrow;G Ekin Atilla-Gokcumen;Jonna Frasor - Oncogenesis (2018)

引用本文的文献

  1. GDPD5 Related to Lipid Metabolism Is a Potential Prognostic Biomarker in Neuroblastoma. - Tengling Luo;Junwei Peng;Qijun Li;Yao Zhang;Yun Huang;Lei Xu;Genling Yang;Dongmei Tan;Qian Zhang;Yi Tan - International journal of molecular sciences (2022)
  2. The epithelial-mesenchymal plasticity landscape: principles of design and mechanisms of regulation. - Jef Haerinck;Steven Goossens;Geert Berx - Nature reviews. Genetics (2023)
  3. Nanomaterials in tumor immunotherapy: new strategies and challenges. - Xudong Zhu;Shenglong Li - Molecular cancer (2023)
  4. DDIT4 Downregulation by siRNA Approach Increases the Activity of Proteins Regulating Fatty Acid Metabolism upon Aspirin Treatment in Human Breast Cancer Cells. - Aistė Savukaitytė;Agnė Bartnykaitė;Justina Bekampytė;Rasa Ugenskienė;Elona Juozaitytė - Current issues in molecular biology (2023)
  5. TRIM21-Promoted FSP1 Plasma Membrane Translocation Confers Ferroptosis Resistance in Human Cancers. - Jun Gong;Yuhui Liu;Wenjia Wang;Ruizhi He;Qilong Xia;Lin Chen;Chunle Zhao;Yang Gao;Yongkang Shi;Yu Bai;Yangwei Liao;Qi Zhang;Feng Zhu;Min Wang;Xu Li;Renyi Qin - Advanced science (Weinheim, Baden-Wurttemberg, Germany) (2023)
  6. Lactylated Apolipoprotein C-II Induces Immunotherapy Resistance by Promoting Extracellular Lipolysis. - Jian Chen;Deping Zhao;Yupeng Wang;Ming Liu;Yuan Zhang;Tingting Feng;Chao Xiao;Huan Song;Rui Miao;Li Xu;Hongwei Chen;Xiaoying Qiu;Yi Xu;Jingxuan Xu;Zelin Cui;Wei Wang;Yanchun Quan;Yifeng Zhu;Chen Huang;Song Guo Zheng;Jian-Yuan Zhao;Ting Zhu;Lianhui Sun;Guangjian Fan - Advanced science (Weinheim, Baden-Wurttemberg, Germany) (2024)
  7. Recent progress in gene therapy for familial hypercholesterolemia treatment. - Yaxin Luo;Yaofeng Hou;Wenwen Zhao;Bei Yang - iScience (2024)
  8. Roles of posttranslational modifications in lipid metabolism and cancer progression. - Tianyu Feng;He Zhang;Yanjie Zhou;Yalan Zhu;Shiya Shi;Kai Li;Ping Lin;Jie Chen - Biomarker research (2024)
  9. Precise targeting of lipid metabolism in the era of immuno-oncology and the latest advances in nano-based drug delivery systems for cancer therapy. - Hongyan Zhang;Yujie Li;Jingyi Huang;Limei Shen;Yang Xiong - Acta pharmaceutica Sinica. B (2024)
  10. Drug Repurposing: A Conduit to Unravelling Metabolic Reprogramming for Cancer Treatment. - Shristy Chaudhary;Abhilash Rana;Seema Bhatnagar - Mini reviews in medicinal chemistry (2025)

... (8 更多 篇文献)


© 2025 MaltSci 麦伴科研 - 我们用人工智能技术重塑科研