Skip to content

AI in health and medicine.

文献信息

DOI10.1038/s41591-021-01614-0
PMID35058619
期刊Nature medicine
影响因子50.0
JCR 分区Q1
发表年份2022
被引次数723
关键词人工智能, 医学影像分析, 人机协作, 技术挑战, 伦理问题
文献类型Journal Article, Research Support, N.I.H., Extramural, Review
ISSN1078-8956
页码31-38
期号28(1)
作者Pranav Rajpurkar, Emma Chen, Oishi Banerjee, Eric J Topol

一句话小结

该研究总结了为期两年的医疗人工智能进展,强调了前瞻性研究和医疗图像分析在缩小研究与应用差距方面的重要性,同时探讨了新兴研究方向及面临的技术和伦理挑战。研究表明,解决这些挑战将有助于实现AI在医学中的潜力,从而提升全球患者的医疗服务质量和可及性。

在麦伴科研 (maltsci.com) 搜索更多文献

人工智能 · 医学影像分析 · 人机协作 · 技术挑战 · 伦理问题

摘要

人工智能(AI)有望广泛重塑医学,可能改善临床医生和患者的体验。我们讨论了为期两年的每周努力所获得的关键发现,旨在追踪和分享医疗AI的主要进展。我们涵盖了前瞻性研究和医疗图像分析的进展,这些进展缩小了研究与应用之间的差距。我们还探讨了几条有前景的新型医疗AI研究方向,包括非图像数据来源、非常规问题表述和人机协作。最后,我们考虑了一些严重的技术和伦理挑战,这些问题涉及数据稀缺到种族偏见等多个方面。随着这些挑战的解决,AI的潜力可能得以实现,使全球患者的医疗服务更加精准、高效和可及。

英文摘要

Artificial intelligence (AI) is poised to broadly reshape medicine, potentially improving the experiences of both clinicians and patients. We discuss key findings from a 2-year weekly effort to track and share key developments in medical AI. We cover prospective studies and advances in medical image analysis, which have reduced the gap between research and deployment. We also address several promising avenues for novel medical AI research, including non-image data sources, unconventional problem formulations and human-AI collaboration. Finally, we consider serious technical and ethical challenges in issues spanning from data scarcity to racial bias. As these challenges are addressed, AI's potential may be realized, making healthcare more accurate, efficient and accessible for patients worldwide.

麦伴智能科研服务

智能阅读回答你对文献的任何问题,帮助理解文献中的复杂图表和公式
定位观点定位某个观点在文献中的蛛丝马迹
加入知识库完成数据提取,报告撰写等更多高级知识挖掘功能

主要研究问题

  1. 在医疗AI的发展中,非图像数据源如何被有效利用以提升诊断准确性?
  2. 人工智能在医疗领域中的伦理挑战有哪些,如何确保技术的公平性与透明度?
  3. AI与医生之间的协作模式如何演变,以改善患者的治疗体验?
  4. 目前在医疗AI研究中,存在哪些主要的技术障碍,未来的解决方案可能是什么?
  5. 如何评估医疗AI技术在不同人群中的适用性,以避免种族偏见和数据稀缺问题?

核心洞察

1. 研究背景和目的

随着人工智能(AI)技术的迅速发展,它在医疗领域的应用正日益受到关注。研究旨在追踪和分享医疗AI的关键进展,特别是如何通过技术进步提升临床医生和患者的体验。此项研究为期两年,聚焦于医疗影像分析的前瞻性研究及其从研究到实际应用的转化。

2. 主要方法和发现

研究采用了定期跟踪的方法,每周汇总医疗AI领域的最新进展。重点讨论了医疗影像分析的进展,强调这些技术在缩小研究与实际应用之间的差距方面所发挥的作用。此外,研究还探讨了其他潜在的医疗AI研究方向,包括非影像数据来源、非传统问题的解决方案以及人机协作的模式。这些研究发现表明,AI在医疗领域的应用具有广泛的可能性和潜力。

3. 核心结论

AI在医疗健康领域的应用能够显著提高医疗服务的准确性、效率和可及性。然而,研究同时指出,技术和伦理方面的一些挑战仍需认真对待,包括数据稀缺性和种族偏见等问题。随着这些挑战的逐步解决,AI的潜力将得以充分发挥,从而改善全球患者的医疗体验。

4. 研究意义和影响

本研究的重要性在于它提供了医疗AI领域的全面视角,强调了技术进步带来的积极变化及其在医疗实践中的实际应用。通过系统地跟踪和分析医疗AI的进展,研究为未来医疗AI研究提供了方向,推动了医护人员与AI的协作模式。同时,该研究也提醒业界在追求技术创新的同时,必须关注伦理和社会责任,以确保AI技术的公平和有效应用。这一研究成果不仅为医疗行业提供了宝贵的数据支持,也为政策制定者和研究者在医疗AI的未来发展中提供了有力的参考依据。

参考文献

  1. Dermatologist-level classification of skin cancer with deep neural networks. - Andre Esteva;Brett Kuprel;Roberto A Novoa;Justin Ko;Susan M Swetter;Helen M Blau;Sebastian Thrun - Nature (2017)
  2. Deep learning for chest radiograph diagnosis: A retrospective comparison of the CheXNeXt algorithm to practicing radiologists. - Pranav Rajpurkar;Jeremy Irvin;Robyn L Ball;Kaylie Zhu;Brandon Yang;Hershel Mehta;Tony Duan;Daisy Ding;Aarti Bagul;Curtis P Langlotz;Bhavik N Patel;Kristen W Yeom;Katie Shpanskaya;Francis G Blankenberg;Jayne Seekins;Timothy J Amrhein;David A Mong;Safwan S Halabi;Evan J Zucker;Andrew Y Ng;Matthew P Lungren - PLoS medicine (2018)
  3. Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network. - Awni Y Hannun;Pranav Rajpurkar;Masoumeh Haghpanahi;Geoffrey H Tison;Codie Bourn;Mintu P Turakhia;Andrew Y Ng - Nature medicine (2019)
  4. Do no harm: a roadmap for responsible machine learning for health care. - Jenna Wiens;Suchi Saria;Mark Sendak;Marzyeh Ghassemi;Vincent X Liu;Finale Doshi-Velez;Kenneth Jung;Katherine Heller;David Kale;Mohammed Saeed;Pilar N Ossorio;Sonoo Thadaney-Israni;Anna Goldenberg - Nature medicine (2019)
  5. Evaluation of Artificial Intelligence-Based Grading of Diabetic Retinopathy in Primary Care. - Yogesan Kanagasingam;Di Xiao;Janardhan Vignarajan;Amita Preetham;Mei-Ling Tay-Kearney;Ateev Mehrotra - JAMA network open (2018)
  6. Impact of a deep learning assistant on the histopathologic classification of liver cancer. - Amirhossein Kiani;Bora Uyumazturk;Pranav Rajpurkar;Alex Wang;Rebecca Gao;Erik Jones;Yifan Yu;Curtis P Langlotz;Robyn L Ball;Thomas J Montine;Brock A Martin;Gerald J Berry;Michael G Ozawa;Florette K Hazard;Ryanne A Brown;Simon B Chen;Mona Wood;Libby S Allard;Lourdes Ylagan;Andrew Y Ng;Jeanne Shen - NPJ digital medicine (2020)
  7. Diagnostic Efficacy and Therapeutic Decision-making Capacity of an Artificial Intelligence Platform for Childhood Cataracts in Eye Clinics: A Multicentre Randomized Controlled Trial. - Haotian Lin;Ruiyang Li;Zhenzhen Liu;Jingjing Chen;Yahan Yang;Hui Chen;Zhuoling Lin;Weiyi Lai;Erping Long;Xiaohang Wu;Duoru Lin;Yi Zhu;Chuan Chen;Dongxuan Wu;Tongyong Yu;Qianzhong Cao;Xiaoyan Li;Jing Li;Wangting Li;Jinghui Wang;Mingmin Yang;Huiling Hu;Li Zhang;Yang Yu;Xuelan Chen;Jianmin Hu;Ke Zhu;Shuhong Jiang;Yalin Huang;Gang Tan;Jialing Huang;Xiaoming Lin;Xinyu Zhang;Lixia Luo;Yuhua Liu;Xialin Liu;Bing Cheng;Danying Zheng;Mingxing Wu;Weirong Chen;Yizhi Liu - EClinicalMedicine (2019)
  8. Detection of colorectal adenomas with a real-time computer-aided system (ENDOANGEL): a randomised controlled study. - Dexin Gong;Lianlian Wu;Jun Zhang;Ganggang Mu;Lei Shen;Jun Liu;Zhengqiang Wang;Wei Zhou;Ping An;Xu Huang;Xiaoda Jiang;Yanxia Li;Xinyue Wan;Shan Hu;Yiyun Chen;Xiao Hu;Youming Xu;Xiaoyun Zhu;Suqin Li;Liwen Yao;Xinqi He;Di Chen;Li Huang;Xiao Wei;Xuemei Wang;Honggang Yu - The lancet. Gastroenterology & hepatology (2020)
  9. Effect of a deep-learning computer-aided detection system on adenoma detection during colonoscopy (CADe-DB trial): a double-blind randomised study. - Pu Wang;Xiaogang Liu;Tyler M Berzin;Jeremy R Glissen Brown;Peixi Liu;Chao Zhou;Lei Lei;Liangping Li;Zhenzhen Guo;Shan Lei;Fei Xiong;Han Wang;Yan Song;Yan Pan;Guanyu Zhou - The lancet. Gastroenterology & hepatology (2020)
  10. Near real-time intraoperative brain tumor diagnosis using stimulated Raman histology and deep neural networks. - Todd C Hollon;Balaji Pandian;Arjun R Adapa;Esteban Urias;Akshay V Save;Siri Sahib S Khalsa;Daniel G Eichberg;Randy S D'Amico;Zia U Farooq;Spencer Lewis;Petros D Petridis;Tamara Marie;Ashish H Shah;Hugh J L Garton;Cormac O Maher;Jason A Heth;Erin L McKean;Stephen E Sullivan;Shawn L Hervey-Jumper;Parag G Patil;B Gregory Thompson;Oren Sagher;Guy M McKhann;Ricardo J Komotar;Michael E Ivan;Matija Snuderl;Marc L Otten;Timothy D Johnson;Michael B Sisti;Jeffrey N Bruce;Karin M Muraszko;Jay Trautman;Christian W Freudiger;Peter Canoll;Honglak Lee;Sandra Camelo-Piragua;Daniel A Orringer - Nature medicine (2020)

引用本文的文献

  1. Machine Learning Approaches to Identify Discriminative Signatures of Volatile Organic Compounds (VOCs) from Bacteria and Fungi Using SPME-DART-MS. - Mehak Arora;Stephen C Zambrzycki;Joshua M Levy;Annette Esper;Jennifer K Frediani;Cassandra L Quave;Facundo M Fernández;Rishikesan Kamaleswaran - Metabolites (2022)
  2. Deep Learning Facilitates Distinguishing Histologic Subtypes of Pulmonary Neuroendocrine Tumors on Digital Whole-Slide Images. - Marius Ilié;Jonathan Benzaquen;Paul Tourniaire;Simon Heeke;Nicholas Ayache;Hervé Delingette;Elodie Long-Mira;Sandra Lassalle;Marame Hamila;Julien Fayada;Josiane Otto;Charlotte Cohen;Abel Gomez-Caro;Jean-Philippe Berthet;Charles-Hugo Marquette;Véronique Hofman;Christophe Bontoux;Paul Hofman - Cancers (2022)
  3. Cardiovascular/Stroke Risk Stratification in Parkinson's Disease Patients Using Atherosclerosis Pathway and Artificial Intelligence Paradigm: A Systematic Review. - Jasjit S Suri;Sudip Paul;Maheshrao A Maindarkar;Anudeep Puvvula;Sanjay Saxena;Luca Saba;Monika Turk;John R Laird;Narendra N Khanna;Klaudija Viskovic;Inder M Singh;Mannudeep Kalra;Padukode R Krishnan;Amer Johri;Kosmas I Paraskevas - Metabolites (2022)
  4. Techniques and Algorithms for Hepatic Vessel Skeletonization in Medical Images: A Survey. - Jianfeng Zhang;Fa Wu;Wanru Chang;Dexing Kong - Entropy (Basel, Switzerland) (2022)
  5. Time to Consider the "Exposome Hypothesis" in the Development of the Obesity Pandemic. - Victoria Catalán;Iciar Avilés-Olmos;Amaia Rodríguez;Sara Becerril;José Antonio Fernández-Formoso;Dimitrios Kiortsis;Piero Portincasa;Javier Gómez-Ambrosi;Gema Frühbeck - Nutrients (2022)
  6. Does the SORG Orthopaedic Research Group Hip Fracture Delirium Algorithm Perform Well on an Independent Intercontinental Cohort of Patients With Hip Fractures Who Are 60 Years or Older? - Jacobien H F Oosterhoff;Tarandeep Oberai;Aditya V Karhade;Job N Doornberg;Gino M M J Kerkhoffs;Ruurd L Jaarsma;Joseph H Schwab;Marilyn Heng - Clinical orthopaedics and related research (2022)
  7. AGEomics Biomarkers and Machine Learning-Realizing the Potential of Protein Glycation in Clinical Diagnostics. - Naila Rabbani - International journal of molecular sciences (2022)
  8. The state of the art for artificial intelligence in lung digital pathology. - Vidya Sankar Viswanathan;Paula Toro;Germán Corredor;Sanjay Mukhopadhyay;Anant Madabhushi - The Journal of pathology (2022)
  9. A rapid review of machine learning approaches for telemedicine in the scope of COVID-19. - Luana Carine Schünke;Blanda Mello;Cristiano André da Costa;Rodolfo Stoffel Antunes;Sandro José Rigo;Gabriel de Oliveira Ramos;Rodrigo da Rosa Righi;Juliana Nichterwitz Scherer;Bruna Donida - Artificial intelligence in medicine (2022)
  10. Gaps and Opportunities of Artificial Intelligence Applications for Pediatric Oncology in European Research: A Systematic Review of Reviews and a Bibliometric Analysis. - Alberto Eugenio Tozzi;Francesco Fabozzi;Megan Eckley;Ileana Croci;Vito Andrea Dell'Anna;Erica Colantonio;Angela Mastronuzzi - Frontiers in oncology (2022)

... (713 更多 篇文献)


© 2025 MaltSci 麦伴科研 - 我们用人工智能技术重塑科研