Skip to content

Structure and function of retroviral integrase.

文献信息

DOI10.1038/s41579-021-00586-9
PMID34244677
期刊Nature reviews. Microbiology
影响因子103.3
JCR 分区Q1
发表年份2022
被引次数51
关键词逆转录病毒整合酶, 整合酶抑制剂, 病毒整合机制
文献类型Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't, Review
ISSN1740-1526
页码20-34
期号20(1)
作者Goedele N Maertens, Alan N Engelman, Peter Cherepanov

一句话小结

本研究综述了逆转录病毒整合酶的结构与功能,揭示了其在病毒 DNA 整合中形成的保守核心机器,并探讨了整合酶抑制剂的作用机制及 HIV 耐药性的获取方式。研究结果为开发高效小分子整合酶抑制剂提供了重要基础,推动了抗病毒治疗的新方向。

在麦伴科研 (maltsci.com) 搜索更多文献

逆转录病毒整合酶 · 整合酶抑制剂 · 病毒整合机制

摘要

逆转录病毒复制的一个标志性特征是建立前病毒状态,即病毒 RNA 基因组的 DNA 副本被稳定地整合入宿主细胞染色体中。整合酶是负责此过程中的催化步骤的病毒酶,整合酶链转移抑制剂广泛用于治疗感染 HIV 的人群。在过去十年中,一系列 X 射线晶体学和低温电子显微镜研究揭示了逆转录病毒 DNA 整合的结构基础。多个整合酶分子聚集在病毒 DNA 末端,组装成一个保守的整合体核心机器,以促进整合。此外,这些结构还提供了整合酶抑制剂作用机制的见解,以及 HIV 如何获得药物耐药性的方式。近年来,伴随着拮抗病毒形态发生的高效小分子全位点整合酶抑制剂的开发,该类抑制剂显示出极大的前景。在本综述中,我们探讨了关于逆转录病毒整合机制和组织的新见解,并强调了该领域尚待解决的问题以及新方向。

英文摘要

A hallmark of retroviral replication is establishment of the proviral state, wherein a DNA copy of the viral RNA genome is stably incorporated into a host cell chromosome. Integrase is the viral enzyme responsible for the catalytic steps involved in this process, and integrase strand transfer inhibitors are widely used to treat people living with HIV. Over the past decade, a series of X-ray crystallography and cryogenic electron microscopy studies have revealed the structural basis of retroviral DNA integration. A variable number of integrase molecules congregate on viral DNA ends to assemble a conserved intasome core machine that facilitates integration. The structures additionally informed on the modes of integrase inhibitor action and the means by which HIV acquires drug resistance. Recent years have witnessed the development of allosteric integrase inhibitors, a highly promising class of small molecules that antagonize viral morphogenesis. In this Review, we explore recent insights into the organization and mechanism of the retroviral integration machinery and highlight open questions as well as new directions in the field.

麦伴智能科研服务

智能阅读回答你对文献的任何问题,帮助理解文献中的复杂图表和公式
定位观点定位某个观点在文献中的蛛丝马迹
加入知识库完成数据提取,报告撰写等更多高级知识挖掘功能

主要研究问题

  1. 近年来关于整合酶的结构研究有哪些新发现,它们如何影响我们对逆转录病毒复制机制的理解?
  2. 整合酶抑制剂的作用机制是什么,为什么它们在治疗HIV中如此重要?
  3. 逆转录病毒整合过程中,整合酶如何与宿主细胞的染色体相互作用?
  4. 全酶抑制剂与传统整合酶抑制剂相比,具有哪些优势和潜在应用?
  5. 在逆转录病毒的药物抗性研究中,整合酶的角色是什么,未来的研究方向可能会集中在哪些方面?

核心洞察

研究背景和目的

逆转录病毒的复制过程的一个标志性特征是建立前病毒状态,即病毒RNA基因组的DNA拷贝被稳定地整合到宿主细胞染色体中。整合酶(IN)是负责这一过程的关键酶,近年来,针对IN的抑制剂在HIV治疗中得到了广泛应用。本文旨在探讨逆转录病毒整合机制的最新研究进展,阐明IN的结构与功能,并讨论相关的药物开发及未来研究方向。

主要方法/材料/实验设计

本研究主要通过X射线晶体学和低温电子显微镜技术来解析逆转录病毒整合酶的结构,进而揭示其功能机制。以下是技术路线的流程图:

Mermaid diagram

关键结果和发现

  1. 整合酶结构:IN由三个结构域组成,形成了一个多聚体复合物,称为intasome,该复合物在病毒DNA末端聚集并促进整合。
  2. 酶活性机制:IN通过两个酶促反应实现病毒DNA与宿主DNA的结合,首先进行3'处理,然后进行链转移。
  3. 抑制剂作用:现有的IN抑制剂(如INSTIs)通过竞争结合IN的活性位点来阻止整合过程,最新的ALLINIs则通过干扰IN与宿主因子的相互作用来发挥作用。

主要结论/意义/创新性

整合酶的结构与功能研究为理解逆转录病毒的整合机制提供了重要基础,揭示了IN与宿主因子之间的相互作用及其在整合过程中的重要性。此外,开发新型抑制剂(如ALLINIs)为HIV治疗提供了新的策略,具有重要的临床应用潜力。

研究局限性和未来方向

  1. 研究局限性:当前研究主要集中在IN的结构与活性上,关于宿主因子如何影响整合过程的机制尚不完全明确。
  2. 未来方向:未来的研究应重点关注IN在病毒生命周期其他阶段的作用,探索IN与宿主因子相互作用的动态变化,以及如何利用这些知识开发更有效的抗病毒药物。
部分内容
研究背景逆转录病毒整合酶在病毒生命周期中的重要性
主要方法X射线晶体学、低温电子显微镜
关键发现IN的结构、酶促机制、抑制剂作用
结论为HIV治疗提供新的策略
局限性对宿主因子影响的理解不足
未来方向探索IN在病毒生命周期中的其他角色

通过这些研究,科学界可以更深入地理解逆转录病毒的整合机制,为抗病毒药物的开发提供理论基础。

参考文献

  1. Detection and isolation of type C retrovirus particles from fresh and cultured lymphocytes of a patient with cutaneous T-cell lymphoma. - B J Poiesz;F W Ruscetti;A F Gazdar;P A Bunn;J D Minna;R C Gallo - Proceedings of the National Academy of Sciences of the United States of America (1980)
  2. The discovery of HTLV-1, the first pathogenic human retrovirus. - John M Coffin - Proceedings of the National Academy of Sciences of the United States of America (2015)
  3. Isolation of a T-lymphotropic retrovirus from a patient at risk for acquired immune deficiency syndrome (AIDS). - F Barré-Sinoussi;J C Chermann;F Rey;M T Nugeyre;S Chamaret;J Gruest;C Dauguet;C Axler-Blin;F Vézinet-Brun;C Rouzioux;W Rozenbaum;L Montagnier - Science (New York, N.Y.) (1983)
  4. Isolation of human T-cell leukemia virus in acquired immune deficiency syndrome (AIDS). - R C Gallo;P S Sarin;E P Gelmann;M Robert-Guroff;E Richardson;V S Kalyanaraman;D Mann;G D Sidhu;R E Stahl;S Zolla-Pazner;J Leibowitch;M Popovic - Science (New York, N.Y.) (1983)
  5. RNA-dependent DNA polymerase in virions of RNA tumour viruses. - D Baltimore - Nature (1970)
  6. RNA-dependent DNA polymerase in virions of Rous sarcoma virus. - H M Temin;S Mizutani - Nature (1970)
  7. Virus-coded origin of a 32,000-dalton protein from avian retrovirus cores: structural relatedness of p32 and the beta polypeptide of the avian retrovirus DNA polymerase. - R D Schiff;D P Grandgenett - Journal of virology (1978)
  8. Characterization of ribosomal frameshifting in HIV-1 gag-pol expression. - T Jacks;M D Power;F R Masiarz;P A Luciw;P J Barr;H E Varmus - Nature (1988)
  9. Three-dimensional analysis of budding sites and released virus suggests a revised model for HIV-1 morphogenesis. - Lars-Anders Carlson;John A G Briggs;Bärbel Glass;James D Riches;Martha N Simon;Marc C Johnson;Barbara Müller;Kay Grünewald;Hans-Georg Kräusslich - Cell host & microbe (2008)
  10. HIV-1 capsid is involved in post-nuclear entry steps. - Nan-Yu Chen;Lihong Zhou;Paul J Gane;Silvana Opp;Neil J Ball;Giuseppe Nicastro;Madeleine Zufferey;Cindy Buffone;Jeremy Luban;David Selwood;Felipe Diaz-Griffero;Ian Taylor;Ariberto Fassati - Retrovirology (2016)

引用本文的文献

  1. The KT Jeang Retrovirology prize 2021: Peter Cherepanov. - - Retrovirology (2021)
  2. Clonal Expansion of Infected CD4+ T Cells in People Living with HIV. - John M Coffin;Stephen H Hughes - Viruses (2021)
  3. Multivalent interactions essential for lentiviral integrase function. - Allison Ballandras-Colas;Vidya Chivukula;Dominika T Gruszka;Zelin Shan;Parmit K Singh;Valerie E Pye;Rebecca K McLean;Gregory J Bedwell;Wen Li;Andrea Nans;Nicola J Cook;Hind J Fadel;Eric M Poeschla;David J Griffiths;Javier Vargas;Ian A Taylor;Dmitry Lyumkis;Hasan Yardimci;Alan N Engelman;Peter Cherepanov - Nature communications (2022)
  4. Cabotegravir, the Long-Acting Integrase Strand Transfer Inhibitor, Potently Inhibits Human T-Cell Lymphotropic Virus Type 1 Transmission in vitro. - Bethany S Schneiderman;Michal S Barski;Goedele N Maertens - Frontiers in medicine (2022)
  5. Multimodal Functionalities of HIV-1 Integrase. - Alan N Engelman;Mamuka Kvaratskhelia - Viruses (2022)
  6. The C-Terminal Domain of HIV-1 Integrase: A Swiss Army Knife for the Virus? - Cecilia Rocchi;Patrice Gouet;Vincent Parissi;Francesca Fiorini - Viruses (2022)
  7. Commercially Available Flavonols Are Better SARS-CoV-2 Inhibitors than Isoflavone and Flavones. - Otávio Augusto Chaves;Natalia Fintelman-Rodrigues;Xuanting Wang;Carolina Q Sacramento;Jairo R Temerozo;André C Ferreira;Mayara Mattos;Filipe Pereira-Dutra;Patrícia T Bozza;Hugo Caire Castro-Faria-Neto;James J Russo;Jingyue Ju;Thiago Moreno L Souza - Viruses (2022)
  8. Integrase deficient lentiviral vector: prospects for safe clinical applications. - Chee-Hong Takahiro Yew;Narmatha Gurumoorthy;Fazlina Nordin;Gee Jun Tye;Wan Safwani Wan Kamarul Zaman;Jun Jie Tan;Min Hwei Ng - PeerJ (2022)
  9. HIV-1 Preintegration Complex Preferentially Integrates the Viral DNA into Nucleosomes Containing Trimethylated Histone 3-Lysine 36 Modification and Flanking Linker DNA. - Nicklas Sapp;Nathaniel Burge;Khan Cox;Prem Prakash;Muthukumar Balasubramaniam;Santosh Thapa;Devin Christensen;Min Li;Jared Linderberger;Mamuka Kvaratskhelia;Jui Pandhare;Robert Craigie;Michael G Poirier;Chandravanu Dash - Journal of virology (2022)
  10. Complex Relationships between HIV-1 Integrase and Its Cellular Partners. - Anna Rozina;Andrey Anisenko;Tatiana Kikhai;Maria Silkina;Marina Gottikh - International journal of molecular sciences (2022)

... (41 更多 篇文献)


© 2025 MaltSci 麦伴科研 - 我们用人工智能技术重塑科研