Appearance
A brain-computer interface that evokes tactile sensations improves robotic arm control.
文献信息
| DOI | 10.1126/science.abd0380 |
|---|---|
| PMID | 34016775 |
| 期刊 | Science (New York, N.Y.) |
| 影响因子 | 45.8 |
| JCR 分区 | Q1 |
| 发表年份 | 2021 |
| 被引次数 | 173 |
| 关键词 | 脑-机接口, 触觉反馈, 机器人手臂, 四肢瘫痪, 神经活动 |
| 文献类型 | Journal Article, Research Support, Non-U.S. Gov't |
| ISSN | 0036-8075 |
| 页码 | 831-836 |
| 期号 | 372(6544) |
| 作者 | Sharlene N Flesher, John E Downey, Jeffrey M Weiss, Christopher L Hughes, Angelica J Herrera, Elizabeth C Tyler-Kabara, Michael L Boninger, Jennifer L Collinger, Robert A Gaunt |
一句话小结
本研究通过双向脑机接口为四肢瘫痪者提供触觉反馈,显著提高了其使用假肢进行功能性动作的表现,临床评估时间减少了近一半。这一发现表明,结合生物控制原理的脑机接口可以有效改善瘫痪患者的运动能力,为假肢技术的发展提供了新的方向。
在麦伴科研 (maltsci.com) 搜索更多文献
脑-机接口 · 触觉反馈 · 机器人手臂 · 四肢瘫痪 · 神经活动
摘要
通过脑机接口控制的假肢可以使四肢瘫痪者执行功能性动作。然而,视觉提供的反馈有限,因为抓取物体的信息最好通过触觉反馈传递。我们通过双向脑机接口补充了视觉信息,该接口记录来自运动皮层的神经活动,并通过皮层内微刺激产生触觉感知。这使得一位四肢瘫痪者在使用机械肢体时显著提高了表现;在临床上肢评估中的试验时间减少了一半,从中位数20.9秒降至10.2秒。时间缩短主要是由于减少了尝试抓取物体的时间,这表明模仿已知的生物控制原理可以使任务表现更接近健全人类的能力。
英文摘要
Prosthetic arms controlled by a brain-computer interface can enable people with tetraplegia to perform functional movements. However, vision provides limited feedback because information about grasping objects is best relayed through tactile feedback. We supplemented vision with tactile percepts evoked using a bidirectional brain-computer interface that records neural activity from the motor cortex and generates tactile sensations through intracortical microstimulation of the somatosensory cortex. This enabled a person with tetraplegia to substantially improve performance with a robotic limb; trial times on a clinical upper-limb assessment were reduced by half, from a median time of 20.9 to 10.2 seconds. Faster times were primarily due to less time spent attempting to grasp objects, revealing that mimicking known biological control principles results in task performance that is closer to able-bodied human abilities.
麦伴智能科研服务
主要研究问题
- 在使用双向脑机接口时,如何优化触觉反馈的强度和频率以进一步提高假肢的控制精度?
- 除了触觉反馈,是否还有其他感官反馈可以结合使用以改善假肢的操控体验?
- 该技术是否可以应用于其他类型的假肢或机器人设备,如何评估其在不同应用中的有效性?
- 在临床试验中,参与者的个体差异(如神经损伤程度)如何影响脑机接口的效果?
- 如何通过改进算法或硬件设计,进一步提升脑机接口在复杂环境下的适应能力和响应速度?
核心洞察
研究背景和目的
在美国,有约169,000人因脊髓损伤而生活在四肢瘫痪的状态下。对于这些患者来说,改善手臂和手的功能是康复的首要目标之一。传统的脑-计算机接口(BCI)可以通过直接记录大脑活动来控制假肢,但通常依赖于视觉反馈,这限制了其操作的精确性。本文旨在探讨通过双向BCI(既能记录神经活动又能刺激感觉皮层)来提供触觉反馈,从而改善四肢瘫痪患者使用机器人手臂的控制能力。
主要方法/材料/实验设计
本研究采用了一种双向BCI系统,该系统通过皮层内微刺激(ICMS)激发触觉感知,并实时记录运动相关的神经活动。具体实验设计如下:
参与者为一名因C5/C6脊髓损伤而导致四肢瘫痪的28岁男性。实验中使用了四个微电极阵列,两个用于记录运动皮层的神经活动,两个用于刺激感觉皮层。参与者在视觉反馈下进行任务训练,并在不同的实验条件下评估其性能,包括有无触觉反馈的比较。
关键结果和发现
- 使用ICMS提供触觉反馈后,参与者在功能性任务中的表现显著改善,ARAT得分中位数从17提高到21(p = 0.029)。
- 任务完成时间减少了51.2%,从20.9秒降至10.2秒(p < 0.0001)。
- 在提供触觉反馈的情况下,参与者在抓取物体的时间减少了66%,这主要推动了整体任务表现的提升。
- 在物体转移任务中,使用ICMS时,参与者在目标区域和物体区域的停留时间均显著减少,显示出操作的效率提高。
主要结论/意义/创新性
本研究表明,利用双向BCI系统提供的人工触觉感知能够显著提升四肢瘫痪患者的功能性表现。这种系统通过模仿自然的感觉反馈,帮助患者更快、更有效地进行物体抓取和操作,接近正常人类的运动能力。这一发现对未来的BCI设计和康复治疗具有重要的指导意义。
研究局限性和未来方向
本研究为单一案例研究,未来需要在更多参与者中验证这些发现的普遍性。此外,研究中采用的触觉编码方案仍有待优化,以适应不同类型的操作任务。未来的研究可以探索不同的刺激模式和反馈机制,以提高对复杂任务的控制能力。
参考文献
- The role of visual deprivation and experience on the performance of sensory substitution devices. - H Christiaan Stronks;Amy C Nau;Michael R Ibbotson;Nick Barnes - Brain research (2015)
- Restoration of reaching and grasping movements through brain-controlled muscle stimulation in a person with tetraplegia: a proof-of-concept demonstration. - A Bolu Ajiboye;Francis R Willett;Daniel R Young;William D Memberg;Brian A Murphy;Jonathan P Miller;Benjamin L Walter;Jennifer A Sweet;Harry A Hoyen;Michael W Keith;P Hunter Peckham;John D Simeral;John P Donoghue;Leigh R Hochberg;Robert F Kirsch - Lancet (London, England) (2017)
- The effects of digital anesthesia on force control using a precision grip. - Joël Monzée;Yves Lamarre;Allan M Smith - Journal of neurophysiology (2003)
- Active tactile exploration using a brain-machine-brain interface. - Joseph E O'Doherty;Mikhail A Lebedev;Peter J Ifft;Katie Z Zhuang;Solaiman Shokur;Hannes Bleuler;Miguel A L Nicolelis - Nature (2011)
- Neural Basis of Touch and Proprioception in Primate Cortex. - Benoit P Delhaye;Katie H Long;Sliman J Bensmaia - Comprehensive Physiology (2018)
- Restoring cortical control of functional movement in a human with quadriplegia. - Chad E Bouton;Ammar Shaikhouni;Nicholas V Annetta;Marcia A Bockbrader;David A Friedenberg;Dylan M Nielson;Gaurav Sharma;Per B Sederberg;Bradley C Glenn;W Jerry Mysiw;Austin G Morgan;Milind Deogaonkar;Ali R Rezai - Nature (2016)
- A performance test for assessment of upper limb function in physical rehabilitation treatment and research. - R C Lyle - International journal of rehabilitation research. Internationale Zeitschrift fur Rehabilitationsforschung. Revue internationale de recherches de readaptation (1981)
- Restoration of motor control and proprioceptive and cutaneous sensation in humans with prior upper-limb amputation via multiple Utah Slanted Electrode Arrays (USEAs) implanted in residual peripheral arm nerves. - Suzanne Wendelken;David M Page;Tyler Davis;Heather A C Wark;David T Kluger;Christopher Duncan;David J Warren;Douglas T Hutchinson;Gregory A Clark - Journal of neuroengineering and rehabilitation (2017)
- Restoring natural sensory feedback in real-time bidirectional hand prostheses. - Stanisa Raspopovic;Marco Capogrosso;Francesco Maria Petrini;Marco Bonizzato;Jacopo Rigosa;Giovanni Di Pino;Jacopo Carpaneto;Marco Controzzi;Tim Boretius;Eduardo Fernandez;Giuseppe Granata;Calogero Maria Oddo;Luca Citi;Anna Lisa Ciancio;Christian Cipriani;Maria Chiara Carrozza;Winnie Jensen;Eugenio Guglielmelli;Thomas Stieglitz;Paolo Maria Rossini;Silvestro Micera - Science translational medicine (2014)
- Home Use of a Neural-connected Sensory Prosthesis Provides the Functional and Psychosocial Experience of Having a Hand Again. - Emily L Graczyk;Linda Resnik;Matthew A Schiefer;Melissa S Schmitt;Dustin J Tyler - Scientific reports (2018)
引用本文的文献
- Short reaction times in response to multi-electrode intracortical microstimulation may provide a basis for rapid movement-related feedback. - Joseph T Sombeck;Lee E Miller - Journal of neural engineering (2019)
- Effects of Peripheral Haptic Feedback on Intracortical Brain-Computer Interface Control and Associated Sensory Responses in Motor Cortex. - Darrel R Deo;Paymon Rezaii;Leigh R Hochberg;Allison M Okamura;Krishna V Shenoy;Jaimie M Henderson - IEEE transactions on haptics (2021)
- Advancing sensory neuroprosthetics using artificial brain networks. - David Haslacher;Khaled Nasr;Surjo R Soekadar - Patterns (New York, N.Y.) (2021)
- Perception of microstimulation frequency in human somatosensory cortex. - Christopher L Hughes;Sharlene N Flesher;Jeffrey M Weiss;Michael Boninger;Jennifer L Collinger;Robert A Gaunt - eLife (2021)
- Evoking highly focal percepts in the fingertips through targeted stimulation of sulcal regions of the brain for sensory restoration. - Santosh Chandrasekaran;Stephan Bickel;Jose L Herrero;Joo-Won Kim;Noah Markowitz;Elizabeth Espinal;Nikunj A Bhagat;Richard Ramdeo;Junqian Xu;Matthew F Glasser;Chad E Bouton;Ashesh D Mehta - Brain stimulation (2021)
- Influence of visual feedback persistence on visuo-motor skill improvement. - Alyssa Unell;Zachary M Eisenstat;Ainsley Braun;Abhinav Gandhi;Sharon Gilad-Gutnick;Shlomit Ben-Ami;Pawan Sinha - Scientific reports (2021)
- Decoding Neural Activity in Sulcal and White Matter Areas of the Brain to Accurately Predict Individual Finger Movement and Tactile Stimuli of the Human Hand. - Chad Bouton;Nikunj Bhagat;Santosh Chandrasekaran;Jose Herrero;Noah Markowitz;Elizabeth Espinal;Joo-Won Kim;Richard Ramdeo;Junqian Xu;Matthew F Glasser;Stephan Bickel;Ashesh Mehta - Frontiers in neuroscience (2021)
- The science and engineering behind sensitized brain-controlled bionic hands. - Chethan Pandarinath;Sliman J Bensmaia - Physiological reviews (2022)
- Historical perspectives, challenges, and future directions of implantable brain-computer interfaces for sensorimotor applications. - Santosh Chandrasekaran;Matthew Fifer;Stephan Bickel;Luke Osborn;Jose Herrero;Breanne Christie;Junqian Xu;Rory K J Murphy;Sandeep Singh;Matthew F Glasser;Jennifer L Collinger;Robert Gaunt;Ashesh D Mehta;Andrew Schwartz;Chad E Bouton - Bioelectronic medicine (2021)
- Plasticity in Cervical Motor Circuits following Spinal Cord Injury and Rehabilitation. - John R Walker;Megan Ryan Detloff - Biology (2021)
... (163 更多 篇文献)
© 2025 MaltSci 麦伴科研 - 我们用人工智能技术重塑科研
