Skip to content

Progress in Brain Computer Interface: Challenges and Opportunities.

文献信息

DOI10.3389/fnsys.2021.578875
PMID33716680
期刊Frontiers in systems neuroscience
影响因子3.5
JCR 分区Q2
发表年份2021
被引次数84
关键词脑-计算机接口, 认知康复, 电生理/血流动力学脑信号, 混合/多模态脑-计算机接口, 神经成像技术
文献类型Journal Article, Review
ISSN1662-5137
页码578875
期号15()
作者Simanto Saha, Khondaker A Mamun, Khawza Ahmed, Raqibul Mostafa, Ganesh R Naik, Sam Darvishi, Ahsan H Khandoker, Mathias Baumert

一句话小结

脑-计算机接口(BCI)为大脑与外部设备之间提供了直接通信的方式,具有在康复、情感计算、机器人技术等领域的广泛应用潜力。本文回顾了BCI领域的最新进展,指出了技术标准化及复杂脑动态提取与分类等关键挑战,以推动BCI技术向日常生活的转变。

在麦伴科研 (maltsci.com) 搜索更多文献

脑-计算机接口 · 认知康复 · 电生理/血流动力学脑信号 · 混合/多模态脑-计算机接口 · 神经成像技术

摘要

脑-计算机接口(BCI)提供了大脑与计算机或其他外部设备之间的直接通信链接。它们通过增强或替代人类的外周工作能力,提供了更大的自由度,并在康复、情感计算、机器人技术、游戏和神经科学等多个领域具有潜在应用。全球范围内的重大研究努力为技术标准化提供了共同平台,并帮助解决高度复杂和非线性的脑动态及相关特征提取和分类挑战。时间变化的心理-神经生理波动及其对脑信号的影响,给BCI研究人员带来了另一个挑战,使得这一技术能够从实验室实验转变为即插即用的日常生活。本文回顾了过去几十年来BCI领域的最新进展,并强调了关键挑战。

英文摘要

Brain computer interfaces (BCI) provide a direct communication link between the brain and a computer or other external devices. They offer an extended degree of freedom either by strengthening or by substituting human peripheral working capacity and have potential applications in various fields such as rehabilitation, affective computing, robotics, gaming, and neuroscience. Significant research efforts on a global scale have delivered common platforms for technology standardization and help tackle highly complex and non-linear brain dynamics and related feature extraction and classification challenges. Time-variant psycho-neurophysiological fluctuations and their impact on brain signals impose another challenge for BCI researchers to transform the technology from laboratory experiments to plug-and-play daily life. This review summarizes state-of-the-art progress in the BCI field over the last decades and highlights critical challenges.

麦伴智能科研服务

智能阅读回答你对文献的任何问题,帮助理解文献中的复杂图表和公式
定位观点定位某个观点在文献中的蛛丝马迹
加入知识库完成数据提取,报告撰写等更多高级知识挖掘功能

主要研究问题

  1. 在脑机接口的研究中,如何解决时间变化的心理神经生理波动对信号的影响?
  2. 脑机接口在不同应用领域(如康复、机器人技术等)中的具体应用案例有哪些?
  3. 目前在脑机接口技术标准化方面存在哪些主要挑战和进展?
  4. 如何评估脑机接口技术在日常生活中的可用性和用户体验?
  5. 未来脑机接口技术的发展方向和潜在应用场景是什么?

核心洞察

研究背景和目的

脑机接口(BCI)是一种实现大脑与计算机或其他外部设备之间直接通信的技术,具有增强或替代人类外周工作能力的潜力。BCI技术在康复、情感计算、机器人、游戏和神经科学等多个领域有着广泛的应用前景。本文旨在总结BCI领域在过去几十年的进展,探讨面临的关键挑战和未来的机遇。

主要方法/材料/实验设计

BCI系统可根据信号获取方式分为侵入性和非侵入性。非侵入性BCI主要使用脑电图(EEG),而侵入性BCI则使用皮层电图(ECoG)和其他技术。BCI系统还可根据用户的意图分为主动BCI和被动BCI。主动BCI涉及用户的自愿意图产生的脑活动,而被动BCI则解码无意的情感或认知状态。

以下是BCI研究的主要技术路线图:

Mermaid diagram

关键结果和发现

  1. 技术进展:BCI技术在信号处理、特征提取和分类方面取得了显著进展,尤其是在实时反馈和系统标准化方面。
  2. 心理生理挑战:时间变动的心理神经生理波动对脑信号的影响是BCI研究的一大挑战,这使得将实验室技术转化为日常生活中的可用技术变得复杂。
  3. 用户特征的影响:个体的心理特征(如注意力、动机)和生理特征(如年龄、性别)显著影响BCI的性能。
  4. 应用前景:BCI的应用范围不断扩展,包括虚拟现实控制、机器人导航和情感识别等。

主要结论/意义/创新性

BCI技术的未来发展依赖于解决以下关键问题:

  • 了解影响BCI性能的神经生理和心理因素。
  • 设计具有高可靠性和便携性的信号获取传感器。
  • 建立通用的伦理框架,确保BCI技术的安全和隐私。

BCI的创新性在于其潜力可以帮助各种神经系统疾病患者恢复功能,并为人机交互提供新的可能性。

研究局限性和未来方向

  • 局限性:目前的BCI系统在长时间使用中的稳定性和可靠性仍需改进,尤其是在非侵入性技术中,信号的噪声比和稳定性是主要问题。
  • 未来方向:未来的研究应集中于跨学科的合作,利用先进的信号处理和机器学习技术,提升BCI的准确性和可用性。同时,需要更多关注伦理和社会经济影响,以促进BCI技术的广泛应用。

总结

BCI技术在许多领域展现出巨大的应用潜力,但仍面临多重挑战。未来的研究应着重于技术的完善、用户体验的提升以及伦理问题的解决,以推动BCI技术的可持续发展。

参考文献

  1. Adaptive Automation Triggered by EEG-Based Mental Workload Index: A Passive Brain-Computer Interface Application in Realistic Air Traffic Control Environment. - Pietro Aricò;Gianluca Borghini;Gianluca Di Flumeri;Alfredo Colosimo;Stefano Bonelli;Alessia Golfetti;Simone Pozzi;Jean-Paul Imbert;Géraud Granger;Raïlane Benhacene;Fabio Babiloni - Frontiers in human neuroscience (2016)
  2. Predicting human resting-state functional connectivity from structural connectivity. - C J Honey;O Sporns;L Cammoun;X Gigandet;J P Thiran;R Meuli;P Hagmann - Proceedings of the National Academy of Sciences of the United States of America (2009)
  3. Current Status, Challenges, and Possible Solutions of EEG-Based Brain-Computer Interface: A Comprehensive Review. - Mamunur Rashid;Norizam Sulaiman;Anwar P P Abdul Majeed;Rabiu Muazu Musa;Ahmad Fakhri Ab Nasir;Bifta Sama Bari;Sabira Khatun - Frontiers in neurorobotics (2020)
  4. Cerebral, subcortical, and cerebellar activation evoked by selective stimulation of muscle and cutaneous afferents: an fMRI study. - Daniel L Wardman;Simon C Gandevia;James G Colebatch - Physiological reports (2014)
  5. Bridging the brain to the world: a perspective on neural interface systems. - John P Donoghue - Neuron (2008)
  6. Deep learning for hybrid EEG-fNIRS brain-computer interface: application to motor imagery classification. - Antonio Maria Chiarelli;Pierpaolo Croce;Arcangelo Merla;Filippo Zappasodi - Journal of neural engineering (2018)
  7. Closed-loop brain training: the science of neurofeedback. - Ranganatha Sitaram;Tomas Ros;Luke Stoeckel;Sven Haller;Frank Scharnowski;Jarrod Lewis-Peacock;Nikolaus Weiskopf;Maria Laura Blefari;Mohit Rana;Ethan Oblak;Niels Birbaumer;James Sulzer - Nature reviews. Neuroscience (2017)
  8. Tools for probing local circuits: high-density silicon probes combined with optogenetics. - György Buzsáki;Eran Stark;Antal Berényi;Dion Khodagholy;Daryl R Kipke;Euisik Yoon;Kensall D Wise - Neuron (2015)
  9. Cortical and subcortical mechanisms of brain-machine interfaces. - Silvia Marchesotti;Roberto Martuzzi;Aaron Schurger;Maria Laura Blefari;José R Del Millán;Hannes Bleuler;Olaf Blanke - Human brain mapping (2017)
  10. An exploration of EEG features during recovery following stroke - implications for BCI-mediated neurorehabilitation therapy. - Darren J Leamy;Juš Kocijan;Katarina Domijan;Joseph Duffin;Richard Ap Roche;Sean Commins;Ronan Collins;Tomas E Ward - Journal of neuroengineering and rehabilitation (2014)

引用本文的文献

  1. Progress in Brain Computer Interface: Challenges and Opportunities. - Simanto Saha;Khondaker A Mamun;Khawza Ahmed;Raqibul Mostafa;Ganesh R Naik;Sam Darvishi;Ahsan H Khandoker;Mathias Baumert - Frontiers in systems neuroscience (2021)
  2. Identification of Brain Electrical Activity Related to Head Yaw Rotations. - Enrico Zero;Chiara Bersani;Roberto Sacile - Sensors (Basel, Switzerland) (2021)
  3. Brain-Computer Interfaces Systems for Upper and Lower Limb Rehabilitation: A Systematic Review. - Daniela Camargo-Vargas;Mauro Callejas-Cuervo;Stefano Mazzoleni - Sensors (Basel, Switzerland) (2021)
  4. Affective Brain-Computer Music Interfaces-Drivers and Implications. - Elisabeth Hildt - Frontiers in human neuroscience (2021)
  5. Advanced Bioelectrical Signal Processing Methods: Past, Present and Future Approach-Part II: Brain Signals. - Radek Martinek;Martina Ladrova;Michaela Sidikova;Rene Jaros;Khosrow Behbehani;Radana Kahankova;Aleksandra Kawala-Sterniuk - Sensors (Basel, Switzerland) (2021)
  6. Influence of Implantation Depth on the Performance of Intracortical Probe Recording Sites. - Joshua O Usoro;Komal Dogra;Justin R Abbott;Rahul Radhakrishna;Stuart F Cogan;Joseph J Pancrazio;Sourav S Patnaik - Micromachines (2021)
  7. Validation of a Novel Wearable Multistream Data Acquisition and Analysis System for Ergonomic Studies. - Luca Ascari;Anna Marchenkova;Andrea Bellotti;Stefano Lai;Lucia Moro;Konstantin Koshmak;Alice Mantoan;Michele Barsotti;Raffaello Brondi;Giovanni Avveduto;Davide Sechi;Alberto Compagno;Pietro Avanzini;Jonas Ambeck-Madsen;Giovanni Vecchiato - Sensors (Basel, Switzerland) (2021)
  8. Novel Hybrid Brain-Computer Interface for Virtual Reality Applications Using Steady-State Visual-Evoked Potential-Based Brain-Computer Interface and Electrooculogram-Based Eye Tracking for Increased Information Transfer Rate. - Jisoo Ha;Seonghun Park;Chang-Hwan Im - Frontiers in neuroinformatics (2022)
  9. Identifying potential training factors in a vibrotactile P300-BCI. - M Eidel;A Kübler - Scientific reports (2022)
  10. Frontal alpha asymmetry interaction with an experimental story EEG brain-computer interface. - Claudia Krogmeier;Brandon S Coventry;Christos Mousas - Frontiers in human neuroscience (2022)

... (74 更多 篇文献)


© 2025 MaltSci 麦伴科研 - 我们用人工智能技术重塑科研