Skip to content

Engineering organoids.

文献信息

DOI10.1038/s41578-021-00279-y
PMID33623712
期刊Nature reviews. Materials
影响因子86.2
JCR 分区Q1
发表年份2021
被引次数444
关键词形态发生、器官发生、干细胞、组织工程
文献类型Journal Article, Review
ISSN2058-8437
页码402-420
期号6(5)
作者Moritz Hofer, Matthias P Lutolf

一句话小结

本综述探讨了类器官在组织发育、疾病建模及药物筛选中的应用潜力,并指出传统培养方法的局限性。通过引入细胞表面和基因工程、设计基质和微流体技术等工程方法,可提高类器官的可重复性和功能测量,从而促进其临床转化。

在麦伴科研 (maltsci.com) 搜索更多文献

形态发生、器官发生、干细胞、组织工程

摘要

类器官是体外微型化和简化的器官模型系统,近年来在组织发育与疾病建模、个性化医学、药物筛选和细胞疗法方面引起了极大的关注。尽管在培养生理相关类器官方面取得了显著成功,但在实现实际应用方面仍面临挑战。特别是自我组织生长的高变异性及实验和分析的受限访问,阻碍了类器官系统的转化能力。在本综述中,我们认为许多传统类器官培养的局限性可以通过各级工程方法来解决。我们探讨了细胞表面和基因工程的方法,并讨论了基于设计基质的干细胞生态位工程,该基质允许类器官生长和形态导向发育的时空控制。我们还研究了微流体方法及从芯片上的器官获得的经验教训如何促进机械生理参数的整合,并提高类器官的可及性,从而改善功能测量。将工程原则应用于类器官可以提高重复性并提供实验控制,这最终将是实现临床转化所必需的。

英文摘要

Organoids are in vitro miniaturized and simplified model systems of organs that have gained enormous interest for modelling tissue development and disease, and for personalized medicine, drug screening and cell therapy. Despite considerable success in culturing physiologically relevant organoids, challenges remain to achieve real-life applications. In particular, the high variability of self-organizing growth and restricted experimental and analytical access hamper the translatability of organoid systems. In this Review, we argue that many limitations of traditional organoid culture can be addressed by engineering approaches at all levels of organoid systems. We investigate cell surface and genetic engineering approaches, and discuss stem cell niche engineering based on the design of matrices that allow spatiotemporal control of organoid growth and shape-guided morphogenesis. We examine how microfluidic approaches and lessons learnt from organs-on-a-chip enable the integration of mechano-physiological parameters and increase accessibility of organoids to improve functional readouts. Applying engineering principles to organoids increases reproducibility and provides experimental control, which will, ultimately, be required to enable clinical translation.

麦伴智能科研服务

智能阅读回答你对文献的任何问题,帮助理解文献中的复杂图表和公式
定位观点定位某个观点在文献中的蛛丝马迹
加入知识库完成数据提取,报告撰写等更多高级知识挖掘功能

主要研究问题

  1. 如何利用细胞表面和基因工程技术来优化类器官的培养和功能?
  2. 在类器官的工程化过程中,如何设计支撑基质以实现时空控制?
  3. 微流控技术如何促进类器官的功能性评估和实验可重复性?
  4. 在个性化医学中,类器官的工程化如何改善药物筛选的有效性?
  5. 针对类器官系统的高变异性,工程化方法可以提供哪些解决方案以提高其临床转化潜力?

核心洞察

研究背景和目的

近年来,类器官(organoids)作为一种体外模型系统,因其在模拟器官发育、疾病和个性化医学中的潜力而受到广泛关注。然而,传统类器官培养方法面临着自组织生长的高变异性和实验分析访问受限等挑战,限制了其临床转化的可能性。本文旨在探讨工程化方法如何在各个层面上解决这些问题,从而提升类器官的可重复性和功能性。

主要方法/材料/实验设计

本文主要采用以下工程化策略:

  1. 细胞工程

    • 修改细胞表面以增强细胞聚集能力。
    • 利用基因编辑技术(如CRISPR-Cas9)调整细胞的内在特性,促进特定细胞类型的分化。
  2. 微环境工程

    • 设计适合类器官生长的基质,以提供更好的生化和生物物理信号。
    • 使用微流体技术实现营养物质和废物的有效输送,增加类器官的可及性。
  3. 形状引导的形态发生

    • 利用3D打印和激光切割等技术提供物理边界,指导细胞的空间组织。
  4. 系统层面工程

    • 整合生理参数(如流体流动、机械力)以增强类器官的成熟度和功能。

以下是类器官工程化的流程图:

Mermaid diagram

关键结果和发现

  • 工程化类器官的细胞生长和功能性得到了显著提升。例如,通过微流体技术,类器官的血管化程度和成熟度显著提高。
  • 使用合成基质和基因编辑技术,能够更好地控制类器官的发育和功能,减少了自组织过程中的变异性。
  • 形状引导的技术能够有效模拟生理环境,增强类器官的功能。

主要结论/意义/创新性

本文提出的工程化方法为类器官研究提供了新的视角,强调了在细胞、微环境和系统层面上的综合工程策略。这些策略不仅提高了类器官的可重复性和功能性,还为其在个性化医学、药物筛选和再生医学中的应用奠定了基础。

研究局限性和未来方向

尽管工程化方法在提升类器官的功能性方面表现出色,但仍存在一些局限性:

  • 当前的类器官系统在成熟度和功能性上仍未完全模拟其体内对应物。
  • 实验操作的复杂性和标准化问题仍需解决,以便于更广泛的应用。

未来的研究方向应包括:

  • 进一步探索不同细胞类型和微环境组合对类器官发育的影响。
  • 开发更为高效和自动化的类器官培养和分析系统,以促进其在临床研究中的应用。

参考文献

  1. Self-organization of polarized cerebellar tissue in 3D culture of human pluripotent stem cells. - Keiko Muguruma;Ayaka Nishiyama;Hideshi Kawakami;Kouichi Hashimoto;Yoshiki Sasai - Cell reports (2015)
  2. Fast and efficient generation of knock-in human organoids using homology-independent CRISPR-Cas9 precision genome editing. - Benedetta Artegiani;Delilah Hendriks;Joep Beumer;Rutger Kok;Xuan Zheng;Indi Joore;Susana Chuva de Sousa Lopes;Jeroen van Zon;Sander Tans;Hans Clevers - Nature cell biology (2020)
  3. Human Brain Organoids on a Chip Reveal the Physics of Folding. - Eyal Karzbrun;Aditya Kshirsagar;Sidney R Cohen;Jacob H Hanna;Orly Reiner - Nature physics (2018)
  4. Characterization of Human Colon Organoids From Inflammatory Bowel Disease Patients. - Emilie d'Aldebert;Muriel Quaranta;Morgane Sébert;Delphine Bonnet;Sylvain Kirzin;Guillaume Portier;Jean-Pierre Duffas;Sophie Chabot;Philippe Lluel;Sophie Allart;Audrey Ferrand;Laurent Alric;Claire Racaud-Sultan;Emmanuel Mas;Céline Deraison;Nathalie Vergnolle - Frontiers in cell and developmental biology (2020)
  5. Role of shear stress and stretch in vascular mechanobiology. - Deshun Lu;Ghassan S Kassab - Journal of the Royal Society, Interface (2011)
  6. In vitro expansion of single Lgr5+ liver stem cells induced by Wnt-driven regeneration. - Meritxell Huch;Craig Dorrell;Sylvia F Boj;Johan H van Es;Vivian S W Li;Marc van de Wetering;Toshiro Sato;Karien Hamer;Nobuo Sasaki;Milton J Finegold;Annelise Haft;Robert G Vries;Markus Grompe;Hans Clevers - Nature (2013)
  7. Organoid single-cell genomic atlas uncovers human-specific features of brain development. - Sabina Kanton;Michael James Boyle;Zhisong He;Malgorzata Santel;Anne Weigert;Fátima Sanchís-Calleja;Patricia Guijarro;Leila Sidow;Jonas Simon Fleck;Dingding Han;Zhengzong Qian;Michael Heide;Wieland B Huttner;Philipp Khaitovich;Svante Pääbo;Barbara Treutlein;J Gray Camp - Nature (2019)
  8. Modelling Cryptosporidium infection in human small intestinal and lung organoids. - Inha Heo;Devanjali Dutta;Deborah A Schaefer;Nino Iakobachvili;Benedetta Artegiani;Norman Sachs;Kim E Boonekamp;Gregory Bowden;Antoni P A Hendrickx;Robert J L Willems;Peter J Peters;Michael W Riggs;Roberta O'Connor;Hans Clevers - Nature microbiology (2018)
  9. Isolation and in vitro expansion of human colonic stem cells. - Peter Jung;Toshiro Sato;Anna Merlos-Suárez;Francisco M Barriga;Mar Iglesias;David Rossell;Herbert Auer;Mercedes Gallardo;Maria A Blasco;Elena Sancho;Hans Clevers;Eduard Batlle - Nature medicine (2011)
  10. Latest Trends in Biosensing for Microphysiological Organs-on-a-Chip and Body-on-a-Chip Systems. - Sebastian Rudi Adam Kratz;Gregor Höll;Patrick Schuller;Peter Ertl;Mario Rothbauer - Biosensors (2019)

引用本文的文献

  1. Heart organoids and tissue models for modeling development and disease. - Matthew Miyamoto;Lucy Nam;Suraj Kannan;Chulan Kwon - Seminars in cell & developmental biology (2021)
  2. Of form and function: Early cardiac morphogenesis across classical and emerging model systems. - Bhavana Shewale;Nicole Dubois - Seminars in cell & developmental biology (2021)
  3. Next-Generation Human Liver Models for Antimalarial Drug Assays. - Kasem Kulkeaw - Antibiotics (Basel, Switzerland) (2021)
  4. Harnessing organs-on-a-chip to model tissue regeneration. - Daniel Naveed Tavakol;Sharon Fleischer;Gordana Vunjak-Novakovic - Cell stem cell (2021)
  5. Cancer spheroids derived exosomes reveal more molecular features relevant to progressed cancer. - Junfang Tu;Xun Luo;Haitao Liu;Jifeng Zhang;Mei He - Biochemistry and biophysics reports (2021)
  6. The role of physical cues in the development of stem cell-derived organoids. - Ilaria Tortorella;Chiara Argentati;Carla Emiliani;Sabata Martino;Francesco Morena - European biophysics journal : EBJ (2022)
  7. Successful Patient-Derived Organoid Culture of Gynecologic Cancers for Disease Modeling and Drug Sensitivity Testing. - Jianling Bi;Andreea M Newtson;Yuping Zhang;Eric J Devor;Megan I Samuelson;Kristina W Thiel;Kimberly K Leslie - Cancers (2021)
  8. Fish primary embryonic pluripotent cells assemble into retinal tissue mirroring in vivo early eye development. - Lucie Zilova;Venera Weinhardt;Tinatini Tavhelidse;Christina Schlagheck;Thomas Thumberger;Joachim Wittbrodt - eLife (2021)
  9. Operationalizing the Use of Biofabricated Tissue Models as Preclinical Screening Platforms for Drug Discovery and Development. - Olive Jung;Min Jae Song;Marc Ferrer - SLAS discovery : advancing life sciences R & D (2021)
  10. Changes in Stem Cell Regulation and Epithelial Organisation during Carcinogenesis and Disease Progression in Gynaecological Malignancies. - Paula Cunnea;Christina Fotopoulou;Jennifer Ploski;Fabian Trillsch;Sven Mahner;Mirjana Kessler - Cancers (2021)

... (434 更多 篇文献)


© 2025 MaltSci 麦伴科研 - 我们用人工智能技术重塑科研