Skip to content

Synthetic biology in the clinic: engineering vaccines, diagnostics, and therapeutics.

文献信息

DOI10.1016/j.cell.2021.01.017
PMID33571426
期刊Cell
影响因子42.5
JCR 分区Q1
发表年份2021
被引次数42
关键词合成生物学, 疫苗开发, 分子诊断, 细胞治疗, 临床应用
文献类型Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't, Research Support, U.S. Gov't, Non-P.H.S., Review
ISSN0092-8674
页码881-898
期号184(4)
作者Xiao Tan, Justin H Letendre, James J Collins, Wilson W Wong

一句话小结

本研究探讨了合成生物学作为一门以设计为驱动的学科,在疫苗开发、分子诊断和细胞治疗等领域的应用,强调了已获批准或在临床试验中的技术。研究表明,合成生物学的最新创新可能对未来生物医学应用产生深远影响,推动该领域的持续发展。

在麦伴科研 (maltsci.com) 搜索更多文献

合成生物学 · 疫苗开发 · 分子诊断 · 细胞治疗 · 临床应用

摘要

合成生物学是一门以设计为驱动的学科,旨在通过分子部件的发现、特征分析和重新利用来工程化新的生物功能。多种合成生物学解决方案正接近广泛应用,展示了这一领域的蓬勃发展。在这里,我们重点介绍合成生物学在疫苗开发、分子诊断和细胞治疗中的应用,强调已获批准用于临床或正在进行临床试验的技术。最后,我们指出合成生物学中的一些最新创新,这些创新可能对未来的生物医学应用产生重大影响。

英文摘要

Synthetic biology is a design-driven discipline centered on engineering novel biological functions through the discovery, characterization, and repurposing of molecular parts. Several synthetic biological solutions to critical biomedical problems are on the verge of widespread adoption and demonstrate the burgeoning maturation of the field. Here, we highlight applications of synthetic biology in vaccine development, molecular diagnostics, and cell-based therapeutics, emphasizing technologies approved for clinical use or in active clinical trials. We conclude by drawing attention to recent innovations in synthetic biology that are likely to have a significant impact on future applications in biomedicine.

麦伴智能科研服务

智能阅读回答你对文献的任何问题,帮助理解文献中的复杂图表和公式
定位观点定位某个观点在文献中的蛛丝马迹
加入知识库完成数据提取,报告撰写等更多高级知识挖掘功能

主要研究问题

  1. 合成生物学在疫苗开发中有哪些具体的应用案例?
  2. 目前有哪些合成生物学技术正在进行临床试验,预期效果如何?
  3. 合成生物学如何改变传统的分子诊断方法?
  4. 在细胞基础治疗中,合成生物学的创新技术有哪些?
  5. 合成生物学的未来趋势将如何影响生物医学领域的研究和应用?

核心洞察

研究背景和目的

合成生物学是一门设计驱动的学科,旨在通过发现、表征和重新利用分子部分来工程化新的生物功能。当前,合成生物学在疫苗开发、分子诊断和细胞治疗等关键生物医学问题上展现出广泛应用的潜力。本研究回顾了合成生物学在临床应用中的进展,重点关注已获批准或正在进行临床试验的技术。

主要方法/材料/实验设计

本研究主要采用以下合成生物学技术和方法:

  1. 疫苗开发:包括基因组密码去优化疫苗、DNA疫苗和RNA疫苗。
  2. 分子诊断:应用于纸基检测、CRISPR诊断技术等。
  3. 细胞治疗:通过合成生物学提高细胞疗法的安全性和有效性。

以下是技术路线的流程图表示:

Mermaid diagram

关键结果和发现

  1. 疫苗开发

    • 基因组密码去优化疫苗:通过大规模同义突变重新设计病毒基因组,成功开发出安全有效的疫苗。
    • DNA和RNA疫苗:快速设计和生产,尤其在COVID-19疫苗的开发中展现出显著效果。
  2. 分子诊断

    • 纸基检测:使用合成基因网络创建的纸基诊断工具,实现了对多种病原体的快速检测。
    • CRISPR诊断技术:利用CRISPR-Cas系统的特性,开发出高灵敏度的核酸检测方法。
  3. 细胞治疗

    • 合成生物学逻辑电路:通过设计逻辑电路提高CAR T细胞的特异性和有效性,减少副作用。

主要结论/意义/创新性

合成生物学在疫苗、诊断和细胞治疗领域的应用显示出巨大的临床潜力,尤其是在应对公共卫生危机(如COVID-19)时,展示了其快速响应的能力。合成生物学不仅提高了生物医学技术的效率和安全性,还为未来的治疗方法提供了新的思路和方向。

研究局限性和未来方向

  1. 局限性

    • 合成生物学的许多应用仍处于实验室阶段,尚未广泛普及。
    • 目前的技术可能面临高成本和复杂的生产流程。
  2. 未来方向

    • 进一步优化合成生物学技术以降低成本,提高可操作性。
    • 加强跨学科合作,推动合成生物学的临床转化,特别是在个性化医疗和疾病监测方面的应用。

参考文献

  1. Self-assembling protein nanoparticles in the design of vaccines. - Jacinto López-Sagaseta;Enrico Malito;Rino Rappuoli;Matthew J Bottomley - Computational and structural biotechnology journal (2016)
  2. Regulated Expansion and Survival of Chimeric Antigen Receptor-Modified T Cells Using Small Molecule-Dependent Inducible MyD88/CD40. - Aaron E Foster;Aruna Mahendravada;Nicholas P Shinners;Wei-Chun Chang;Jeannette Crisostomo;An Lu;Mariam Khalil;Eva Morschl;Joanne L Shaw;Sunandan Saha;MyLinh T Duong;Matthew R Collinson-Pautz;David L Torres;Tania Rodriguez;Tsvetelina Pentcheva-Hoang;J Henri Bayle;Kevin M Slawin;David M Spencer - Molecular therapy : the journal of the American Society of Gene Therapy (2017)
  3. Design of a synthetic yeast genome. - Sarah M Richardson;Leslie A Mitchell;Giovanni Stracquadanio;Kun Yang;Jessica S Dymond;James E DiCarlo;Dongwon Lee;Cheng Lai Victor Huang;Srinivasan Chandrasegaran;Yizhi Cai;Jef D Boeke;Joel S Bader - Science (New York, N.Y.) (2017)
  4. A system for the continuous directed evolution of biomolecules. - Kevin M Esvelt;Jacob C Carlson;David R Liu - Nature (2011)
  5. Intradermal SynCon® Ebola GP DNA Vaccine Is Temperature Stable and Safely Demonstrates Cellular and Humoral Immunogenicity Advantages in Healthy Volunteers. - Pablo Tebas;Kimberly A Kraynyak;Ami Patel;Joel N Maslow;Matthew P Morrow;Albert J Sylvester;Dawson Knoblock;Elisabeth Gillespie;Dinah Amante;Trina Racine;Trevor McMullan;Moonsup Jeong;Christine C Roberts;Young K Park;Jean Boyer;Kate E Broderick;Gary P Kobinger;Mark Bagarazzi;David B Weiner;Niranjan Y Sardesai;Scott M White - The Journal of infectious diseases (2019)
  6. Self-adjusting synthetic gene circuit for correcting insulin resistance. - Haifeng Ye;Mingqi Xie;Shuai Xue;Ghislaine Charpin-El Hamri;Jianli Yin;Henryk Zulewski;Martin Fussenegger - Nature biomedical engineering (2017)
  7. A Randomized Phase 2 Study of ADXS11-001 Listeria monocytogenes-Listeriolysin O Immunotherapy With or Without Cisplatin in Treatment of Advanced Cervical Cancer. - Partha Basu;Ajay Mehta;Minish Jain;Sudeep Gupta;Rajnish V Nagarkar;Subhashini John;Robert Petit - International journal of gynecological cancer : official journal of the International Gynecological Cancer Society (2018)
  8. Systemic delivery of factor IX messenger RNA for protein replacement therapy. - Suvasini Ramaswamy;Nina Tonnu;Kiyoshi Tachikawa;Pattraranee Limphong;Jerel B Vega;Priya P Karmali;Pad Chivukula;Inder M Verma - Proceedings of the National Academy of Sciences of the United States of America (2017)
  9. Redirecting gene-modified T cells toward various cancer types using tagged antibodies. - Koji Tamada;Degui Geng;Yukimi Sakoda;Navneeta Bansal;Ratika Srivastava;Zhaoyang Li;Eduardo Davila - Clinical cancer research : an official journal of the American Association for Cancer Research (2012)
  10. Machine-learning approach expands the repertoire of anti-CRISPR protein families. - Ayal B Gussow;Allyson E Park;Adair L Borges;Sergey A Shmakov;Kira S Makarova;Yuri I Wolf;Joseph Bondy-Denomy;Eugene V Koonin - Nature communications (2020)

引用本文的文献

  1. RNA Engineering for Public Health: Innovations in RNA-Based Diagnostics and Therapeutics. - Walter Thavarajah;Laura M Hertz;David Z Bushhouse;Chloé M Archuleta;Julius B Lucks - Annual review of chemical and biomolecular engineering (2021)
  2. Synthetic biology as driver for the biologization of materials sciences. - O Burgos-Morales;M Gueye;L Lacombe;C Nowak;R Schmachtenberg;M Hörner;C Jerez-Longres;H Mohsenin;H J Wagner;W Weber - Materials today. Bio (2021)
  3. Minimally instrumented SHERLOCK (miSHERLOCK) for CRISPR-based point-of-care diagnosis of SARS-CoV-2 and emerging variants. - Helena de Puig;Rose A Lee;Devora Najjar;Xiao Tan;Luis R Soeknsen;Nicolaas M Angenent-Mari;Nina M Donghia;Nicole E Weckman;Audrey Ory;Carlos F Ng;Peter Q Nguyen;Angelo S Mao;Thomas C Ferrante;Geoffrey Lansberry;Hani Sallum;James Niemi;James J Collins - Science advances (2021)
  4. Integrating United States Biomanufacturing Across Vaccines and Therapeutics. - Krishanu Saha;Krishnendu Roy - NAM perspectives (2021)
  5. A computational walk to the hidden peaks of protein performance. - Sonja Billerbeck - Synthetic biology (Oxford, England) (2021)
  6. Therapeutic reversal of Huntington's disease by in vivo self-assembled siRNAs. - Li Zhang;Tengteng Wu;Yangyang Shan;Ge Li;Xue Ni;Xiaorui Chen;Xiuting Hu;Lishan Lin;Yongchao Li;Yalun Guan;Jinfeng Gao;Dingbang Chen;Yu Zhang;Zhong Pei;Xi Chen - Brain : a journal of neurology (2021)
  7. Programmable Cell-Free Transcriptional Switches for Antibody Detection. - Aitor Patino Diaz;Sara Bracaglia;Simona Ranallo;Tania Patino;Alessandro Porchetta;Francesco Ricci - Journal of the American Chemical Society (2022)
  8. Development of synthetic biotics as treatment for human diseases. - Aoife M Brennan - Synthetic biology (Oxford, England) (2021)
  9. An SI-traceable reference material for virus-like particles. - Andrea Briones;Gustavo Martos;Magali Bedu;Tiphaine Choteau;Ralf D Josephs;Robert I Wielgosz;Maxim G Ryadnov - iScience (2022)
  10. Autonomous push button-controlled rapid insulin release from a piezoelectrically activated subcutaneous cell implant. - Haijie Zhao;Shuai Xue;Marie-Didiée Hussherr;Ana Palma Teixeira;Martin Fussenegger - Science advances (2022)

... (32 更多 篇文献)


© 2025 MaltSci 麦伴科研 - 我们用人工智能技术重塑科研