Skip to content

Metabolic Codependencies in the Tumor Microenvironment.

文献信息

DOI10.1158/2159-8290.CD-20-1211
PMID33504580
期刊Cancer discovery
影响因子33.3
JCR 分区Q1
发表年份2021
被引次数174
关键词代谢重编程, 肿瘤微环境, 内源性信号, 外源性信号, 代谢调节
文献类型Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't, Research Support, U.S. Gov't, Non-P.H.S., Review
ISSN2159-8274
页码1067-1081
期号11(5)
作者Prasenjit Dey, Alec C Kimmelman, Ronald A DePinho

一句话小结

本研究综述了驱动癌细胞代谢重编程的内在和外在机制,发现癌细胞内的致癌改变与宿主细胞因子共同作用,调节代谢途径。该研究强调,靶向代谢途径需考虑癌症基因型和肿瘤微环境,以提高治疗效果。

在麦伴科研 (maltsci.com) 搜索更多文献

代谢重编程 · 肿瘤微环境 · 内源性信号 · 外源性信号 · 代谢调节

摘要

代谢重编程使癌细胞能够生长、增殖和存活。这种重编程是由癌细胞内的致癌改变与作用于肿瘤微环境中癌细胞的宿主细胞因子的共同作用驱动的。癌细胞内在机制激活信号转导成分,这些成分要么直接增强代谢酶的活性,要么上调转录因子,从而增加代谢调节因子的表达。外源性信号机制涉及宿主来源的因子,这些因子进一步促进和放大癌细胞中的代谢重编程。本文综述了驱动肿瘤微环境中癌症代谢的内在和外在机制,以及如何将这些机制作为治疗靶点。意义:癌细胞的代谢重编程是内在和外在因素的汇聚信号的结果。内在信号维持基线代谢状态,而外在信号则根据代谢物的可用性和细胞的需求来微调代谢过程。因此,成功靶向代谢途径需要基于癌症的基因型、肿瘤微环境组成和组织位置的细致方法。

英文摘要

Metabolic reprogramming enables cancer cell growth, proliferation, and survival. This reprogramming is driven by the combined actions of oncogenic alterations in cancer cells and host cell factors acting on cancer cells in the tumor microenvironment. Cancer cell-intrinsic mechanisms activate signal transduction components that either directly enhance metabolic enzyme activity or upregulate transcription factors that in turn increase expression of metabolic regulators. Extrinsic signaling mechanisms involve host-derived factors that further promote and amplify metabolic reprogramming in cancer cells. This review describes intrinsic and extrinsic mechanisms driving cancer metabolism in the tumor microenvironment and how such mechanisms may be targeted therapeutically. SIGNIFICANCE: Cancer cell metabolic reprogramming is a consequence of the converging signals originating from both intrinsic and extrinsic factors. Intrinsic signaling maintains the baseline metabolic state, whereas extrinsic signals fine-tune the metabolic processes based on the availability of metabolites and the requirements of the cells. Therefore, successful targeting of metabolic pathways will require a nuanced approach based on the cancer's genotype, tumor microenvironment composition, and tissue location.

麦伴智能科研服务

智能阅读回答你对文献的任何问题,帮助理解文献中的复杂图表和公式
定位观点定位某个观点在文献中的蛛丝马迹
加入知识库完成数据提取,报告撰写等更多高级知识挖掘功能

主要研究问题

  1. 在肿瘤微环境中,哪些特定的宿主细胞因子对癌细胞的代谢重编程起到关键作用?
  2. 癌细胞的内在信号传导机制如何具体影响代谢酶的活性和代谢调节因子的表达?
  3. 目前有哪些针对肿瘤微环境中代谢通路的治疗策略正在研究或应用?
  4. 在不同类型的癌症中,肿瘤微环境的代谢依赖性是否存在显著差异?这些差异如何影响治疗效果?
  5. 代谢重编程如何影响肿瘤细胞的生存和增殖,进而影响肿瘤的进展和转移?

核心洞察

研究背景和目的

癌细胞的代谢重编程是其生长、增殖和存活的关键。这一过程受癌细胞内源性变化与宿主细胞因素的共同作用驱动。了解这些机制对于开发新的癌症治疗策略具有重要意义。本综述旨在探讨肿瘤微环境中驱动癌细胞代谢的内源性和外源性机制,并讨论如何针对这些机制进行治疗。

主要方法/材料/实验设计

本研究综述了内源性和外源性信号在癌细胞代谢重编程中的作用,主要包括以下几个方面:

  1. 内源性机制

    • 癌细胞内的信号转导组分被激活,直接增强代谢酶的活性。
    • 转录因子的上调导致代谢调节因子的表达增加。
  2. 外源性机制

    • 宿主来源的因子进一步促进并放大癌细胞的代谢重编程。

以下是研究的技术路线图:

Mermaid diagram

关键结果和发现

  • 癌细胞的代谢重编程是内源性和外源性信号共同作用的结果。
  • 内源性信号维持了基础代谢状态,而外源性信号则根据代谢物的可用性和细胞需求微调代谢过程。
  • 不同类型的癌症可能对代谢干预有不同的反应,这与其基因型和肿瘤微环境的组成密切相关。

主要结论/意义/创新性

成功靶向癌细胞的代谢通路需要基于癌症的基因型、肿瘤微环境的组成和组织位置的细致策略。这一发现强调了在癌症治疗中综合考虑内源性和外源性因素的重要性,为未来的治疗方案提供了新的视角和方向。

研究局限性和未来方向

  • 本综述未能深入探讨不同癌症类型之间代谢重编程的具体差异,未来的研究应关注这一领域。
  • 对于如何有效靶向代谢途径,仍需更多临床试验和基础研究的支持。
  • 未来研究可以进一步探索宿主细胞因素与癌细胞代谢之间的复杂相互作用,以发现新的治疗靶点。

参考文献

  1. Suppression of insulin feedback enhances the efficacy of PI3K inhibitors. - Benjamin D Hopkins;Chantal Pauli;Xing Du;Diana G Wang;Xiang Li;David Wu;Solomon C Amadiume;Marcus D Goncalves;Cindy Hodakoski;Mark R Lundquist;Rohan Bareja;Yan Ma;Emily M Harris;Andrea Sboner;Himisha Beltran;Mark A Rubin;Siddhartha Mukherjee;Lewis C Cantley - Nature (2018)
  2. Metabolic Competition in the Tumor Microenvironment Is a Driver of Cancer Progression. - Chih-Hao Chang;Jing Qiu;David O'Sullivan;Michael D Buck;Takuro Noguchi;Jonathan D Curtis;Qiongyu Chen;Mariel Gindin;Matthew M Gubin;Gerritje J W van der Windt;Elena Tonc;Robert D Schreiber;Edward J Pearce;Erika L Pearce - Cell (2015)
  3. Combination of ERK and autophagy inhibition as a treatment approach for pancreatic cancer. - Kirsten L Bryant;Clint A Stalnecker;Daniel Zeitouni;Jennifer E Klomp;Sen Peng;Andrey P Tikunov;Venugopal Gunda;Mariaelena Pierobon;Andrew M Waters;Samuel D George;Garima Tomar;Björn Papke;G Aaron Hobbs;Liang Yan;Tikvah K Hayes;J Nathaniel Diehl;Gennifer D Goode;Nina V Chaika;Yingxue Wang;Guo-Fang Zhang;Agnieszka K Witkiewicz;Erik S Knudsen;Emanuel F Petricoin;Pankaj K Singh;Jeffrey M Macdonald;Nhan L Tran;Costas A Lyssiotis;Haoqiang Ying;Alec C Kimmelman;Adrienne D Cox;Channing J Der - Nature medicine (2019)
  4. Genetics and biology of pancreatic ductal adenocarcinoma. - Haoqiang Ying;Prasenjit Dey;Wantong Yao;Alec C Kimmelman;Giulio F Draetta;Anirban Maitra;Ronald A DePinho - Genes & development (2016)
  5. Plasma membrane V-ATPase controls oncogenic RAS-induced macropinocytosis. - Craig Ramirez;Andrew D Hauser;Emily A Vucic;Dafna Bar-Sagi - Nature (2019)
  6. Metabolic Reprogramming Supports IFN-γ Production by CD56bright NK Cells. - Sinéad E Keating;Vanessa Zaiatz-Bittencourt;Roisín M Loftus;Ciara Keane;Kiva Brennan;David K Finlay;Clair M Gardiner - Journal of immunology (Baltimore, Md. : 1950) (2016)
  7. Q's next: the diverse functions of glutamine in metabolism, cell biology and cancer. - R J DeBerardinis;T Cheng - Oncogene (2010)
  8. Myc-induced proliferation and transformation require Akt-mediated phosphorylation of FoxO proteins. - Caroline Bouchard;Judith Marquardt;Alexandra Brás;René H Medema;Martin Eilers - The EMBO journal (2004)
  9. KRAS4A directly regulates hexokinase 1. - Caroline R Amendola;James P Mahaffey;Seth J Parker;Ian M Ahearn;Wei-Ching Chen;Mo Zhou;Helen Court;Jie Shi;Sebastian L Mendoza;Michael J Morten;Eli Rothenberg;Eyal Gottlieb;Youssef Z Wadghiri;Richard Possemato;Stevan R Hubbard;Allan Balmain;Alec C Kimmelman;Mark R Philips - Nature (2019)
  10. Tumor necrosis factor-alpha suppresses insulin-induced tyrosine phosphorylation of insulin receptor and its substrates. - R Feinstein;H Kanety;M Z Papa;B Lunenfeld;A Karasik - The Journal of biological chemistry (1993)

引用本文的文献

  1. Lessons from Cancer Metabolism for Pulmonary Arterial Hypertension and Fibrosis. - SeungHye Han;Navdeep S Chandel - American journal of respiratory cell and molecular biology (2021)
  2. Genetic and biological hallmarks of colorectal cancer. - Jiexi Li;Xingdi Ma;Deepavali Chakravarti;Shabnam Shalapour;Ronald A DePinho - Genes & development (2021)
  3. Tumor Microenvironment-Derived Metabolites: A Guide to Find New Metabolic Therapeutic Targets and Biomarkers. - Juan C García-Cañaveras;Agustín Lahoz - Cancers (2021)
  4. Cancer metabolism: looking forward. - Inmaculada Martínez-Reyes;Navdeep S Chandel - Nature reviews. Cancer (2021)
  5. Pyroptosis, metabolism, and tumor immune microenvironment. - Tiantian Du;Jie Gao;Peilong Li;Yunshan Wang;Qiuchen Qi;Xiaoyan Liu;Juan Li;Chuanxin Wang;Lutao Du - Clinical and translational medicine (2021)
  6. Reproducible Lipid Alterations in Patient-Derived Breast Cancer Xenograft FFPE Tissue Identified with MALDI MSI for Pre-Clinical and Clinical Application. - Vanna Denti;Maria K Andersen;Andrew Smith;Anna Mary Bofin;Anna Nordborg;Fulvio Magni;Siver Andreas Moestue;Marco Giampà - Metabolites (2021)
  7. Tumor microenvironment-activated cancer cell membrane-liposome hybrid nanoparticle-mediated synergistic metabolic therapy and chemotherapy for non-small cell lung cancer. - Wei Zhang;Chunai Gong;Ziqiang Chen;Ming Li;Yuping Li;Jing Gao - Journal of nanobiotechnology (2021)
  8. Avenues of research in dietary interventions to target tumor metabolism in osteosarcoma. - Taiana Campos Leite;Rebecca Jean Watters;Kurt Richard Weiss;Giuseppe Intini - Journal of translational medicine (2021)
  9. MiR-489-3p Reduced Pancreatic Cancer Proliferation and Metastasis By Targeting PKM2 and LDHA Involving Glycolysis. - Dan Zhang;Zhiwei He;Yiyi Shen;Jie Wang;Tao Liu;Jianxin Jiang - Frontiers in oncology (2021)
  10. Aberrant lipid metabolism in cancer cells and tumor microenvironment: the player rather than bystander in cancer progression and metastasis. - Xiujing Yu;Shuyi Mi;Jun Ye;Guochun Lou - Journal of Cancer (2021)

... (164 更多 篇文献)


© 2025 MaltSci 麦伴科研 - 我们用人工智能技术重塑科研