Appearance
Vascularized organoids on a chip: strategies for engineering organoids with functional vasculature.
文献信息
| DOI | 10.1039/d0lc01186j |
|---|---|
| PMID | 33480945 |
| 期刊 | Lab on a chip |
| 影响因子 | 5.4 |
| JCR 分区 | Q1 |
| 发表年份 | 2021 |
| 被引次数 | 126 |
| 关键词 | 血管化类器官, 微流控平台, 功能血管 |
| 文献类型 | Journal Article, Review |
| ISSN | 1473-0189 |
| 页码 | 473-488 |
| 期号 | 21(3) |
| 作者 | Shun Zhang, Zhengpeng Wan, Roger D Kamm |
一句话小结
本研究回顾了人类器官样体在血管化和毛细血管床工程方面的最新进展,强调了功能性血管在器官样体生长和成熟中的重要性,尤其是解决因缺乏灌注血管导致的核心区域坏死问题。通过探讨将血管化技术整合到微流控平台的策略,旨在推动器官样体的体外功能实现,为再生医学和药物开发提供新的工具和思路。
在麦伴科研 (maltsci.com) 搜索更多文献
摘要
人类器官样体是从均质多能干细胞自我组织和分化而成的,它们复制了其体内对应物的关键结构和功能特征。尽管器官样体技术迅速发展并广泛应用,但在实现真正体内功能方面仍存在主要限制,这主要是由于缺乏成熟的结构组织和组织尺寸的限制,这两者都是缺乏功能性血管的直接结果。在没有可灌注血管的情况下,器官样体内的核心区域在发育过程中会因为增加的代谢需求而迅速变为坏死,而这些需求仅靠扩散无法满足。因此,在器官样体模型中引入功能性血管对于其生长超过数百微米并成熟超出胚胎和胎儿阶段是不可或缺的。在此,我们回顾了器官样体血管化和体外毛细血管床工程的最新进展,并进一步探讨将其整合到微流控平台上的策略,旨在建立体外器官样体内的灌注血管。
英文摘要
Human organoids, self-organized and differentiated from homogenous pluripotent stem cells (PSC), replicate the key structural and functional characteristics of their in vivo counterparts. Despite the rapid advancement of organoid technology and its diverse applications, major limitations in achieving truly in vivo like functionality have been the lack of matured structural organization and constraints on tissue size, both of which are direct consequences of lacking a functional vasculature. In the absence of perfusable vessels, a core region within organoids quickly becomes necrotic during development due to increased metabolic demands that cannot be met by diffusion alone. Thus, incorporating functional vasculature in organoid models is indispensable for their growth in excess of several hundred microns and maturaturation beyond the embryonic and fetal phase. Here, we review recent advancements in vascularizing organoids and engineering in vitro capillary beds, and further explore strategies to integrate them on a microfluidic based platform, aiming for establishing perfused vasculature throughout organoids in vitro.
麦伴智能科研服务
主要研究问题
- 在工程化有功能血管的类器官时,如何评估其成熟度和功能性?
- 目前在微流控平台上集成功能性血管的主要技术挑战是什么?
- 未来在类器官研究中,血管化的进展可能会对药物筛选和疾病模型产生怎样的影响?
- 有哪些具体的实验方法可以用来验证类器官中血管的功能性和通透性?
- 除了血管化,类器官在再生医学中的其他关键技术需求有哪些?
核心洞察
研究背景和目的
人类器官样体(organoids)是从均质的多能干细胞(pluripotent stem cells, PSCs)自组织而成的三维细胞聚集体,能够再现其体内对应器官的关键结构和功能特征。然而,尽管器官样体技术快速发展,其在体外模拟生理功能方面仍面临重大挑战,尤其是缺乏成熟的血管结构,这直接限制了其生长和发育。本文综述了在微流控平台上工程化血管化器官样体的最新进展,探讨了在体外建立功能性血管网络的策略。
主要方法/材料/实验设计
研究中主要采用了以下方法来实现器官样体的血管化:
共培养内皮细胞(ECs):
- 将内皮细胞与不同类型的干细胞共培养,促进血管网络的形成。
共分化:
- 通过引导中胚层前体细胞的发育来产生内皮细胞,以更好地模拟胚胎发育中的血管生成。
机械刺激:
- 在微流控设备中施加流体剪切力,以促进内皮细胞的增殖和血管网络的形成。
微流控技术:
- 利用微流控芯片的设计,创建具有可控流动的微环境,支持血管化和器官样体的共同生长。
以下是技术路线的流程图:
关键结果和发现
- 研究表明,通过共培养和共分化的方法可以有效促进器官样体的血管化,增强其生长和功能。
- 机械刺激的应用显著提高了内皮细胞的增殖率和血管网络的成熟度。
- 微流控技术能够提供一个精确控制的微环境,有助于血管化器官样体的建立。
主要结论/意义/创新性
本文强调了在体外工程化功能性血管网络的重要性,指出了实现器官样体血管化的多种策略。这些进展为器官样体技术的应用提供了新的方向,尤其是在疾病模型、药物筛选和再生医学领域。通过整合不同的工程技术,有望实现真正的功能性血管化器官样体,进而推动个性化医疗和再生医学的发展。
研究局限性和未来方向
尽管取得了一定进展,当前的研究仍存在一些局限性:
- 目前的血管化技术在体外仍未能完全实现功能性灌注,许多研究仍依赖于体内移植。
- 不同器官样体的生成和血管化策略尚缺乏标准化,需进一步优化和系统化。
未来的研究方向包括:
- 探索更多的细胞类型和培养基的组合,以优化血管化效果。
- 发展更为精确的微流控技术,以实现更复杂的血管网络。
- 研究不同生物信号在血管化过程中的作用,以提高器官样体的生理相关性。
参考文献
- Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis. - Minoru Takasato;Pei X Er;Han S Chiu;Barbara Maier;Gregory J Baillie;Charles Ferguson;Robert G Parton;Ernst J Wolvetang;Matthias S Roost;Susana M Chuva de Sousa Lopes;Melissa H Little - Nature (2015)
- Biomanufacturing of organ-specific tissues with high cellular density and embedded vascular channels. - Mark A Skylar-Scott;Sebastien G M Uzel;Lucy L Nam;John H Ahrens;Ryan L Truby;Sarita Damaraju;Jennifer A Lewis - Science advances (2019)
- Human blood vessel organoids as a model of diabetic vasculopathy. - Reiner A Wimmer;Alexandra Leopoldi;Martin Aichinger;Nikolaus Wick;Brigitte Hantusch;Maria Novatchkova;Jasmin Taubenschmid;Monika Hämmerle;Christopher Esk;Joshua A Bagley;Dominik Lindenhofer;Guibin Chen;Manfred Boehm;Chukwuma A Agu;Fengtang Yang;Beiyuan Fu;Johannes Zuber;Juergen A Knoblich;Dontscho Kerjaschki;Josef M Penninger - Nature (2019)
- 3D bioprinting spatiotemporally defined patterns of growth factors to tightly control tissue regeneration. - Fiona E Freeman;Pierluca Pitacco;Lieke H A van Dommelen;Jessica Nulty;David C Browe;Jung-Youn Shin;Eben Alsberg;Daniel J Kelly - Science advances (2020)
- Engineering Organoid Vascularization. - Sergei Grebenyuk;Adrian Ranga - Frontiers in bioengineering and biotechnology (2019)
- On the mechanism of tissue reconstruction by dissociated cells. I. Population kinetics, differential adhesiveness. and the absence of directed migration. - M S STEINBERG - Proceedings of the National Academy of Sciences of the United States of America (1962)
- Genetically engineering self-organization of human pluripotent stem cells into a liver bud-like tissue using Gata6. - Patrick Guye;Mohammad R Ebrahimkhani;Nathan Kipniss;Jeremy J Velazquez;Eldi Schoenfeld;Samira Kiani;Linda G Griffith;Ron Weiss - Nature communications (2016)
- Engineering human islet organoids from iPSCs using an organ-on-chip platform. - Tingting Tao;Yaqing Wang;Wenwen Chen;Zhongyu Li;Wentao Su;Yaqiong Guo;Pengwei Deng;Jianhua Qin - Lab on a chip (2019)
- Human Brain Organoids on a Chip Reveal the Physics of Folding. - Eyal Karzbrun;Aditya Kshirsagar;Sidney R Cohen;Jacob H Hanna;Orly Reiner - Nature physics (2018)
- Formation of microvascular networks in vitro. - John P Morgan;Peter F Delnero;Ying Zheng;Scott S Verbridge;Junmei Chen;Michael Craven;Nak Won Choi;Anthony Diaz-Santana;Pouneh Kermani;Barbara Hempstead;José A López;Thomas N Corso;Claudia Fischbach;Abraham D Stroock - Nature protocols (2013)
引用本文的文献
- Organoid research in digestive system tumors. - Xiaoxiao Yang;Xuewen Xu;Haitao Zhu;Ming Wang;Dongqing Wang - Oncology letters (2021)
- Tubular human brain organoids to model microglia-mediated neuroinflammation. - Zheng Ao;Hongwei Cai;Zhuhao Wu;Sunghwa Song;Hande Karahan;Byungwook Kim;Hui-Chen Lu;Jungsu Kim;Ken Mackie;Feng Guo - Lab on a chip (2021)
- Generation and validation of APOE knockout human iPSC-derived cerebral organoids. - Yuka A Martens;Siming Xu;Richard Tait;Gary Li;Xinping C Zhao;Wenyan Lu;Chia-Chen Liu;Takahisa Kanekiyo;Guojun Bu;Jing Zhao - STAR protocols (2021)
- Operationalizing the Use of Biofabricated Tissue Models as Preclinical Screening Platforms for Drug Discovery and Development. - Olive Jung;Min Jae Song;Marc Ferrer - SLAS discovery : advancing life sciences R & D (2021)
- A robust vasculogenic microfluidic model using human immortalized endothelial cells and Thy1 positive fibroblasts. - Zhengpeng Wan;Shun Zhang;Amy X Zhong;Sarah E Shelton;Marco Campisi;Shriram K Sundararaman;Giovanni S Offeddu;Eunkyung Ko;Lina Ibrahim;Mark F Coughlin;Tiankun Liu;Jing Bai;David A Barbie;Roger D Kamm - Biomaterials (2021)
- In Vitro Strategies to Vascularize 3D Physiologically Relevant Models. - Alessandra Dellaquila;Chau Le Bao;Didier Letourneur;Teresa Simon-Yarza - Advanced science (Weinheim, Baden-Wurttemberg, Germany) (2021)
- Organoids: a novel modality in disease modeling. - Zahra Heydari;Farideh Moeinvaziri;Tarun Agarwal;Paria Pooyan;Anastasia Shpichka;Tapas K Maiti;Peter Timashev;Hossein Baharvand;Massoud Vosough - Bio-design and manufacturing (2021)
- The vascular niche in next generation microphysiological systems. - Makena L Ewald;Yu-Hsi Chen;Abraham P Lee;Christopher C W Hughes - Lab on a chip (2021)
- Prevascularized Micro-/Nano-Sized Spheroid/Bead Aggregates for Vascular Tissue Engineering. - Maedeh Rahimnejad;Narges Nasrollahi Boroujeni;Sepideh Jahangiri;Navid Rabiee;Mohammad Rabiee;Pooyan Makvandi;Omid Akhavan;Rajender S Varma - Nano-micro letters (2021)
- Pericytes: Intrinsic Transportation Engineers of the CNS Microcirculation. - Ahmed M Eltanahy;Yara A Koluib;Albert Gonzales - Frontiers in physiology (2021)
... (116 更多 篇文献)
© 2025 MaltSci 麦伴科研 - 我们用人工智能技术重塑科研
