Appearance
Molecular representations in AI-driven drug discovery: a review and practical guide.
文献信息
| DOI | 10.1186/s13321-020-00460-5 |
|---|---|
| PMID | 33431035 |
| 期刊 | Journal of cheminformatics |
| 影响因子 | 5.7 |
| JCR 分区 | Q1 |
| 发表年份 | 2020 |
| 被引次数 | 128 |
| 关键词 | 人工智能, 化学信息学, 药物发现, 线性符号, 巨分子 |
| 文献类型 | Journal Article, Review |
| ISSN | 1758-2946 |
| 页码 | 56 |
| 期号 | 12(1) |
| 作者 | Laurianne David, Amol Thakkar, Rocío Mercado, Ola Engkvist |
一句话小结
本研究综述了在药物发现中常用的电子分子和大分子表示法,强调了基于图的表示法在人工智能驱动药物开发中的重要性。通过提供结构表示法的指导,旨在帮助化学表示法经验较少的研究人员在相关领域进行有效的跨学科应用。
在麦伴科研 (maltsci.com) 搜索更多文献
人工智能 · 化学信息学 · 药物发现 · 线性符号 · 巨分子
摘要
过去一个世纪的技术进步,以计算机革命和高通量筛选技术在药物发现中的出现为标志,为生物活性分子的计算分析和可视化开辟了道路。为了实现这一目的,有必要以一种计算机可读且各领域科学家能够理解的语法来表示分子。多年来,开发了大量的化学表示法,这种数量众多的原因在于计算机的快速发展以及生产一种涵盖所有结构和化学特征的表示法的复杂性。在此,我们介绍一些在药物发现中最受欢迎的电子分子和大分子表示法,其中许多基于图表示法。此外,我们还描述了这些表示法在人工智能驱动的药物发现中的应用。我们的目的是提供一个关于结构表示法的简要指南,这些表示法对于人工智能在药物发现中的实践至关重要。本综述旨在为那些在化学表示法处理方面经验较少的研究人员提供指导,并帮助他们在这些领域的交叉应用中展开工作。
英文摘要
The technological advances of the past century, marked by the computer revolution and the advent of high-throughput screening technologies in drug discovery, opened the path to the computational analysis and visualization of bioactive molecules. For this purpose, it became necessary to represent molecules in a syntax that would be readable by computers and understandable by scientists of various fields. A large number of chemical representations have been developed over the years, their numerosity being due to the fast development of computers and the complexity of producing a representation that encompasses all structural and chemical characteristics. We present here some of the most popular electronic molecular and macromolecular representations used in drug discovery, many of which are based on graph representations. Furthermore, we describe applications of these representations in AI-driven drug discovery. Our aim is to provide a brief guide on structural representations that are essential to the practice of AI in drug discovery. This review serves as a guide for researchers who have little experience with the handling of chemical representations and plan to work on applications at the interface of these fields.
麦伴智能科研服务
主要研究问题
- 在AI驱动的药物发现中,哪些特定的分子表示法最有效,为什么?
- 不同的分子表示法如何影响AI模型的预测能力和准确性?
- 除了图形表示法,还有哪些其他类型的分子表示法可以用于药物发现?
- 在处理复杂的生物大分子时,分子表示法面临哪些挑战?
- 未来分子表示法的发展趋势是什么,可能会如何影响药物发现的过程?
核心洞察
研究背景和目的
随着计算机技术和高通量筛选技术的发展,生物活性分子的计算分析和可视化变得日益重要。为了使分子结构能够被计算机处理并为科学家所理解,开发了多种化学表示法。本文旨在回顾和指导在人工智能驱动的药物发现中常用的分子表示方法,特别是图表示法,以帮助缺乏相关经验的研究人员更好地理解和应用这些技术。
主要方法/材料/实验设计
本文通过对化学表示法的系统回顾,介绍了不同类型的分子表示,包括:
- 分子图:将分子中的原子视为节点,化学键视为边,构建图结构。
- 线性表示法:如SMILES和InChI,便于存储和查询。
- 反应表示法:如反应SMILES和SMIRKS,用于描述化学反应。
以下是主要的技术路线示意图:
关键结果和发现
- 分子图是最常用的机器可读表示,能够有效编码分子的结构和属性。
- 线性表示法如SMILES和InChI提供了紧凑的存储方式,适合快速查询和处理。
- 反应表示法则使得化学反应的预测和合成路线的设计成为可能。
- 本文还强调了各种表示法在人工智能和机器学习中的应用潜力,尤其是在药物发现和分子设计领域。
主要结论/意义/创新性
本文总结了当前化学表示法的多样性及其在药物发现中的重要性,指出不同表示法的选择应基于具体任务的需求。这为研究人员提供了实用的指导,尤其是在快速发展的AI和机器学习领域,帮助他们在药物开发中更好地利用化学表示法。
研究局限性和未来方向
- 局限性:尽管本文覆盖了多种表示法,但未能详尽介绍所有可能的表示法,且某些新兴技术的应用仍在探索阶段。
- 未来方向:随着AI技术的不断进步,未来的研究应关注如何结合多种表示法,以提高分子设计和药物发现的效率。同时,进一步的标准化和统一化也将促进不同研究领域之间的合作与交流。
参考文献
- Development and Application of a Data-Driven Reaction Classification Model: Comparison of an Electronic Lab Notebook and Medicinal Chemistry Literature. - Gian Marco Ghiandoni;Michael J Bodkin;Beining Chen;Dimitar Hristozov;James E A Wallace;James Webster;Valerie J Gillet - Journal of chemical information and modeling (2019)
- WURCS: the Web3 unique representation of carbohydrate structures. - Kenichi Tanaka;Kiyoko F Aoki-Kinoshita;Masaaki Kotera;Hiromichi Sawaki;Shinichiro Tsuchiya;Noriaki Fujita;Toshihide Shikanai;Masaki Kato;Shin Kawano;Issaku Yamada;Hisashi Narimatsu - Journal of chemical information and modeling (2014)
- Annotation of Peptide Structures Using SMILES and Other Chemical Codes-Practical Solutions. - Piotr Minkiewicz;Anna Iwaniak;Małgorzata Darewicz - Molecules (Basel, Switzerland) (2017)
- GlycoCT-a unifying sequence format for carbohydrates. - S Herget;R Ranzinger;K Maass;C-W V D Lieth - Carbohydrate research (2008)
- Algorithm for reaction classification. - Hans Kraut;Josef Eiblmaier;Guenter Grethe;Peter Löw;Heinz Matuszczyk;Heinz Saller - Journal of chemical information and modeling (2013)
- CGRtools: Python Library for Molecule, Reaction, and Condensed Graph of Reaction Processing. - Ramil I Nugmanov;Ravil N Mukhametgaleev;Tagir Akhmetshin;Timur R Gimadiev;Valentina A Afonina;Timur I Madzhidov;Alexandre Varnek - Journal of chemical information and modeling (2019)
- CHUCKLES: a method for representing and searching peptide and peptoid sequences on both monomer and atomic levels. - M A Siani;D Weininger;J M Blaney - Journal of chemical information and computer sciences (1994)
- Mercury 4.0: from visualization to analysis, design and prediction. - Clare F Macrae;Ioana Sovago;Simon J Cottrell;Peter T A Galek;Patrick McCabe;Elna Pidcock;Michael Platings;Greg P Shields;Joanna S Stevens;Matthew Towler;Peter A Wood - Journal of applied crystallography (2020)
- Using SMILES strings for the description of chemical connectivity in the Crystallography Open Database. - Miguel Quirós;Saulius Gražulis;Saulė Girdzijauskaitė;Andrius Merkys;Antanas Vaitkus - Journal of cheminformatics (2018)
- New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. - Jonathan B Baell;Georgina A Holloway - Journal of medicinal chemistry (2010)
引用本文的文献
- From Big Data to Artificial Intelligence: chemoinformatics meets new challenges. - Igor V Tetko;Ola Engkvist - Journal of cheminformatics (2020)
- Advances in de Novo Drug Design: From Conventional to Machine Learning Methods. - Varnavas D Mouchlis;Antreas Afantitis;Angela Serra;Michele Fratello;Anastasios G Papadiamantis;Vassilis Aidinis;Iseult Lynch;Dario Greco;Georgia Melagraki - International journal of molecular sciences (2021)
- Proposal of the Annotation of Phosphorylated Amino Acids and Peptides Using Biological and Chemical Codes. - Piotr Minkiewicz;Małgorzata Darewicz;Anna Iwaniak;Marta Turło - Molecules (Basel, Switzerland) (2021)
- Applications of Virtual Screening in Bioprospecting: Facts, Shifts, and Perspectives to Explore the Chemo-Structural Diversity of Natural Products. - Kauê Santana;Lidiane Diniz do Nascimento;Anderson Lima E Lima;Vinícius Damasceno;Claudio Nahum;Rodolpho C Braga;Jerônimo Lameira - Frontiers in chemistry (2021)
- Progress on open chemoinformatic tools for expanding and exploring the chemical space. - José L Medina-Franco;Norberto Sánchez-Cruz;Edgar López-López;Bárbara I Díaz-Eufracio - Journal of computer-aided molecular design (2022)
- Cheminformatic Characterization of Natural Antimicrobial Products for the Development of New Lead Compounds. - Samson Olaitan Oselusi;Alan Christoffels;Samuel Ayodele Egieyeh - Molecules (Basel, Switzerland) (2021)
- Fold2Seq: A Joint Sequence(1D)-Fold(3D) Embedding-based Generative Model for Protein Design. - Yue Cao;Payel Das;Vijil Chenthamarakshan;Pin-Yu Chen;Igor Melnyk;Yang Shen - Proceedings of machine learning research (2021)
- Should We Embed in Chemistry? A Comparison of Unsupervised Transfer Learning with PCA, UMAP, and VAE on Molecular Fingerprints. - Mario Lovrić;Tomislav Đuričić;Han T N Tran;Hussain Hussain;Emanuel Lacić;Morten A Rasmussen;Roman Kern - Pharmaceuticals (Basel, Switzerland) (2021)
- The Middle Science: Traversing Scale In Complex Many-Body Systems. - Aurora E Clark;Henry Adams;Rigoberto Hernandez;Anna I Krylov;Anders M N Niklasson;Sapna Sarupria;Yusu Wang;Stefan M Wild;Qian Yang - ACS central science (2021)
- Representation of molecules for drug response prediction. - Xin An;Xi Chen;Daiyao Yi;Hongyang Li;Yuanfang Guan - Briefings in bioinformatics (2022)
... (118 更多 篇文献)
© 2025 MaltSci 麦伴科研 - 我们用人工智能技术重塑科研
