Skip to content

Single-Cell Sequencing of Brain Cell Transcriptomes and Epigenomes.

文献信息

DOI10.1016/j.neuron.2020.12.010
PMID33412093
期刊Neuron
影响因子15.0
JCR 分区Q1
发表年份2021
被引次数130
关键词ATAC-seq, DNA甲基化, 细胞状态, 细胞类型, 表观基因组
文献类型Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't, Review
ISSN0896-6273
页码11-26
期号109(1)
作者Ethan J Armand, Junhao Li, Fangming Xie, Chongyuan Luo, Eran A Mukamel

一句话小结

单细胞测序技术的应用正在革新我们对大脑神经电路细胞组成的理解,能够全面表征细胞类型的多样性,并揭示基因调控机制。该研究为未来设计研究工具、探索大脑电路的功能及其解剖、连接性和生理学提供了重要的理论基础。

在麦伴科研 (maltsci.com) 搜索更多文献

ATAC-seq · DNA甲基化 · 细胞状态 · 细胞类型 · 表观基因组

摘要

单细胞测序技术,包括转录组和表观基因组分析,正在改变我们对神经电路细胞组成部分的理解。通过直接测量数千到数百万个单个细胞中的多种分子特征,单细胞测序方法能够全面表征大脑细胞类型的多样性。这些测量揭示了塑造细胞身份的基因调控机制,并提供了关于大脑细胞群体之间发育和进化关系的见解。单细胞测序数据可以帮助设计用于针对大脑电路组分功能研究的工具,将分子特征与解剖学、连接性、形态和生理学联系起来。在这里,我们讨论了单细胞转录组和表观基因组测序的基本原理、数据的综合计算分析,以及在神经科学中的关键应用。

英文摘要

Single-cell sequencing technologies, including transcriptomic and epigenomic assays, are transforming our understanding of the cellular building blocks of neural circuits. By directly measuring multiple molecular signatures in thousands to millions of individual cells, single-cell sequencing methods can comprehensively characterize the diversity of brain cell types. These measurements uncover gene regulatory mechanisms that shape cellular identity and provide insight into developmental and evolutionary relationships between brain cell populations. Single-cell sequencing data can aid the design of tools for targeted functional studies of brain circuit components, linking molecular signatures with anatomy, connectivity, morphology, and physiology. Here, we discuss the fundamental principles of single-cell transcriptome and epigenome sequencing, integrative computational analysis of the data, and key applications in neuroscience.

麦伴智能科研服务

智能阅读回答你对文献的任何问题,帮助理解文献中的复杂图表和公式
定位观点定位某个观点在文献中的蛛丝马迹
加入知识库完成数据提取,报告撰写等更多高级知识挖掘功能

主要研究问题

  1. 单细胞测序技术如何在神经科学中应用于不同类型脑细胞的功能研究?
  2. 在单细胞转录组和表观组测序中,如何确保数据的准确性和可重复性?
  3. 单细胞测序能否揭示不同脑细胞类型在神经发育中的特定角色?
  4. 在单细胞分析中,如何处理和整合来自不同实验的多样性数据?
  5. 单细胞测序的进展如何影响我们对脑疾病机制的理解和治疗策略的制定?

核心洞察

研究背景和目的

单细胞测序技术(包括转录组和表观基因组测序)正在改变我们对神经回路细胞组成的理解。这些技术能够直接测量数千到数百万个单个细胞中的多种分子特征,从而全面表征脑细胞类型的多样性。本研究旨在探讨单细胞转录组和表观基因组测序的基本原理、数据的整合计算分析以及在神经科学中的关键应用。

主要方法/材料/实验设计

本研究主要使用单细胞转录组测序(scRNA-seq)和单细胞表观基因组测序(snATAC-seq)等技术。实验设计包括以下几个步骤:

Mermaid diagram
  1. 样本收集:从特定的神经解剖区域提取新鲜或冷冻组织。
  2. 单细胞分离:使用板式细胞分选或液滴技术将单个细胞分离。
  3. RNA提取与逆转录:提取细胞内RNA并逆转录为cDNA。
  4. 文库构建:构建测序文库并进行高通量测序。
  5. 数据分析与整合:使用计算工具分析转录组和表观基因组数据。
  6. 生物学解释与应用:将分析结果与细胞类型、功能和疾病相关性联系起来。

关键结果和发现

  • 单细胞转录组和表观基因组测序揭示了脑细胞类型的多样性,包括不同的神经元和胶质细胞亚型。
  • 研究表明,转录组和表观基因组特征可以为理解细胞身份和功能提供重要信息。
  • 在阿尔茨海默病等疾病模型中,单细胞测序揭示了细胞特异性的转录组变化。

主要结论/意义/创新性

单细胞测序技术为神经科学提供了强大的工具,能够揭示细胞类型的复杂性及其在健康和疾病中的功能。通过整合转录组和表观基因组数据,研究人员能够更全面地理解神经元的身份和功能。这种方法的创新性在于其能够同时提供细胞的转录和表观遗传信息,为理解脑的发育、塑性和疾病提供了新的视角。

研究局限性和未来方向

  • 单细胞技术的局限性包括双细胞(doublet)效应、样本污染和RNA的丢失等问题。
  • 未来的研究应关注如何整合单细胞数据与生理和形态学测量,以建立细胞类型的全面图谱。
  • 进一步的发展可能会包括实时动态监测细胞转录组变化,以更好地理解神经元的功能和行为。

本研究强调了单细胞测序在揭示神经科学中的细胞多样性和功能的重要性,并为未来的研究提供了基础。

参考文献

  1. Complex multi-enhancer contacts captured by genome architecture mapping. - Robert A Beagrie;Antonio Scialdone;Markus Schueler;Dorothee C A Kraemer;Mita Chotalia;Sheila Q Xie;Mariano Barbieri;Inês de Santiago;Liron-Mark Lavitas;Miguel R Branco;James Fraser;Josée Dostie;Laurence Game;Niall Dillon;Paul A W Edwards;Mario Nicodemi;Ana Pombo - Nature (2017)
  2. Simultaneous single-cell profiling of lineages and cell types in the vertebrate brain. - Bushra Raj;Daniel E Wagner;Aaron McKenna;Shristi Pandey;Allon M Klein;Jay Shendure;James A Gagnon;Alexander F Schier - Nature biotechnology (2018)
  3. Cicero Predicts cis-Regulatory DNA Interactions from Single-Cell Chromatin Accessibility Data. - Hannah A Pliner;Jonathan S Packer;José L McFaline-Figueroa;Darren A Cusanovich;Riza M Daza;Delasa Aghamirzaie;Sanjay Srivatsan;Xiaojie Qiu;Dana Jackson;Anna Minkina;Andrew C Adey;Frank J Steemers;Jay Shendure;Cole Trapnell - Molecular cell (2018)
  4. Epigenomic diversity of cortical projection neurons in the mouse brain. - Zhuzhu Zhang;Jingtian Zhou;Pengcheng Tan;Yan Pang;Angeline C Rivkin;Megan A Kirchgessner;Elora Williams;Cheng-Ta Lee;Hanqing Liu;Alexis D Franklin;Paula Assakura Miyazaki;Anna Bartlett;Andrew I Aldridge;Minh Vu;Lara Boggeman;Conor Fitzpatrick;Joseph R Nery;Rosa G Castanon;Mohammad Rashid;Matthew W Jacobs;Tony Ito-Cole;Carolyn O'Connor;António Pinto-Duartec;Bertha Dominguez;Jared B Smith;Sheng-Yong Niu;Kuo-Fen Lee;Xin Jin;Eran A Mukamel;M Margarita Behrens;Joseph R Ecker;Edward M Callaway - Nature (2021)
  5. cisTopic: cis-regulatory topic modeling on single-cell ATAC-seq data. - Carmen Bravo González-Blas;Liesbeth Minnoye;Dafni Papasokrati;Sara Aibar;Gert Hulselmans;Valerie Christiaens;Kristofer Davie;Jasper Wouters;Stein Aerts - Nature methods (2019)
  6. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. - Erez Lieberman-Aiden;Nynke L van Berkum;Louise Williams;Maxim Imakaev;Tobias Ragoczy;Agnes Telling;Ido Amit;Bryan R Lajoie;Peter J Sabo;Michael O Dorschner;Richard Sandstrom;Bradley Bernstein;M A Bender;Mark Groudine;Andreas Gnirke;John Stamatoyannopoulos;Leonid A Mirny;Eric S Lander;Job Dekker - Science (New York, N.Y.) (2009)
  7. Analysis of intronic and exonic reads in RNA-seq data characterizes transcriptional and post-transcriptional regulation. - Dimos Gaidatzis;Lukas Burger;Maria Florescu;Michael B Stadler - Nature biotechnology (2015)
  8. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. - Patrik L Ståhl;Fredrik Salmén;Sanja Vickovic;Anna Lundmark;José Fernández Navarro;Jens Magnusson;Stefania Giacomello;Michaela Asp;Jakub O Westholm;Mikael Huss;Annelie Mollbrink;Sten Linnarsson;Simone Codeluppi;Åke Borg;Fredrik Pontén;Paul Igor Costea;Pelin Sahlén;Jan Mulder;Olaf Bergmann;Joakim Lundeberg;Jonas Frisén - Science (New York, N.Y.) (2016)
  9. Identification of transcription factor binding sites using ATAC-seq. - Zhijian Li;Marcel H Schulz;Thomas Look;Matthias Begemann;Martin Zenke;Ivan G Costa - Genome biology (2019)
  10. RNA velocity of single cells. - Gioele La Manno;Ruslan Soldatov;Amit Zeisel;Emelie Braun;Hannah Hochgerner;Viktor Petukhov;Katja Lidschreiber;Maria E Kastriti;Peter Lönnerberg;Alessandro Furlan;Jean Fan;Lars E Borm;Zehua Liu;David van Bruggen;Jimin Guo;Xiaoling He;Roger Barker;Erik Sundström;Gonçalo Castelo-Branco;Patrick Cramer;Igor Adameyko;Sten Linnarsson;Peter V Kharchenko - Nature (2018)

引用本文的文献

  1. Functional Dissection of Glutamatergic and GABAergic Neurons in the Bed Nucleus of the Stria Terminalis. - Seong-Rae Kim;Sung-Yon Kim - Molecules and cells (2021)
  2. Single-Cell Transcriptomics Supports a Role of CHD8 in Autism. - Anke Hoffmann;Dietmar Spengler - International journal of molecular sciences (2021)
  3. Epigenetic regulation during human cortical development: Seq-ing answers from the brain to the organoid. - Emily M A Lewis;Komal Kaushik;Luke A Sandoval;Irene Antony;Sabine Dietmann;Kristen L Kroll - Neurochemistry international (2021)
  4. Single-Cell RNA Sequencing in Parkinson's Disease. - Shi-Xun Ma;Su Bin Lim - Biomedicines (2021)
  5. Dopamine Neuron Diversity: Recent Advances and Current Challenges in Human Stem Cell Models and Single Cell Sequencing. - Alessandro Fiorenzano;Edoardo Sozzi;Malin Parmar;Petter Storm - Cells (2021)
  6. Functional Genomics of Axons and Synapses to Understand Neurodegenerative Diseases. - Andres Di Paolo;Joaquin Garat;Guillermo Eastman;Joaquina Farias;Federico Dajas-Bailador;Pablo Smircich;José Roberto Sotelo-Silveira - Frontiers in cellular neuroscience (2021)
  7. Evolution of glutamatergic signaling and synapses. - Leonid L Moroz;Mikhail A Nikitin;Pavlin G Poličar;Andrea B Kohn;Daria Y Romanova - Neuropharmacology (2021)
  8. Analyzing Modern Biomolecules: The Revolution of Nucleic-Acid Sequencing - Review. - Gabriel Dorado;Sergio Gálvez;Teresa E Rosales;Víctor F Vásquez;Pilar Hernández - Biomolecules (2021)
  9. Chromatin Alterations in Neurological Disorders and Strategies of (Epi)Genome Rescue. - Marcin Janowski;Małgorzata Milewska;Peyman Zare;Aleksandra Pękowska - Pharmaceuticals (Basel, Switzerland) (2021)
  10. Development, Diversity, and Death of MGE-Derived Cortical Interneurons. - Rhîannan H Williams;Therese Riedemann - International journal of molecular sciences (2021)

... (120 更多 篇文献)


© 2025 MaltSci 麦伴科研 - 我们用人工智能技术重塑科研