Appearance
Artificial intelligence in drug discovery and development.
文献信息
| DOI | 10.1016/j.drudis.2020.10.010 |
|---|---|
| PMID | 33099022 |
| 期刊 | Drug discovery today |
| 影响因子 | 7.5 |
| JCR 分区 | Q1 |
| 发表年份 | 2021 |
| 被引次数 | 356 |
| 关键词 | 人工智能, 药物发现, 药物开发, 制药行业, 技术挑战 |
| 文献类型 | Journal Article, Research Support, Non-U.S. Gov't, Review |
| ISSN | 1359-6446 |
| 页码 | 80-93 |
| 期号 | 26(1) |
| 作者 | Debleena Paul, Gaurav Sanap, Snehal Shenoy, Dnyaneshwar Kalyane, Kiran Kalia, Rakesh K Tekade |
一句话小结
人工智能的集成在药物发现与开发中推动了制药行业的快速增长,带来了革命性的变化。本文探讨了该领域的现状、所用工具和技术、面临的挑战及解决方案,强调了人工智能在提升药物研发效率方面的重要意义。
在麦伴科研 (maltsci.com) 搜索更多文献
人工智能 · 药物发现 · 药物开发 · 制药行业 · 技术挑战
摘要
人工智能集成的药物发现与开发加速了制药行业的增长,导致了制药行业的革命性变化。在这里,我们讨论了集成的领域、实施人工智能所使用的工具和技术、当前面临的挑战以及克服这些挑战的方法。
英文摘要
Artificial intelligence-integrated drug discovery and development has accelerated the growth of the pharmaceutical sector, leading to a revolutionary change in the pharma industry. Here, we discuss areas of integration, tools, and techniques utilized in enforcing AI, ongoing challenges, and ways to overcome them.
麦伴智能科研服务
主要研究问题
- 人工智能在药物发现和开发中的具体应用案例有哪些?
- 目前在药物研发过程中,人工智能面临的主要挑战是什么?
- 有哪些新兴的工具和技术可以进一步提升人工智能在药物开发中的效率?
- 人工智能如何改变传统药物研发的流程和方法?
- 在未来的药物研发中,人工智能可能会带来哪些新的趋势和变革?
核心洞察
研究背景和目的
随着人工智能(AI)技术的迅速发展,其在制药行业的应用正日益广泛,特别是在药物发现和开发的各个阶段。本研究旨在探讨AI在制药行业中的整合应用,包括药物发现、药物再利用、提高生产效率、临床试验等,以期降低人力工作负担并缩短研发周期。
主要方法/材料/实验设计
本研究采用了多种AI工具和技术,主要包括机器学习(ML)和深度学习(DL),并讨论了它们在药物发现中的具体应用。研究中还使用了以下技术路线:
关键结果和发现
- 药物发现:AI能够快速识别潜在的药物分子,并优化其结构设计,显著提高药物筛选的效率。
- 药物再利用:AI模型如DeepDTA可以有效预测药物与靶标的结合亲和力,帮助发现现有药物的新用途。
- 临床试验设计:AI可以通过分析患者的基因组和环境数据,优化患者招募,提高临床试验的成功率。
- 生产效率:AI在药物生产中的应用可以优化配方设计,减少试错过程,提高生产质量和效率。
主要结论/意义/创新性
本研究表明,AI在制药行业的应用不仅可以加速药物发现和开发过程,还能提高药物的安全性和有效性。通过利用AI技术,制药公司能够更好地应对市场需求,提高竞争力。此外,AI的引入有助于推动个性化医疗的发展,使药物治疗更加精准。
研究局限性和未来方向
尽管AI在制药行业展现了巨大潜力,但仍面临数据质量、技术整合、人员技能等挑战。未来的研究应着重于以下几个方面:
- 数据整合:建立高质量的数据共享平台,以便更好地训练AI模型。
- 人才培养:培养具备AI技术和制药知识的专业人才,以推动技术的有效应用。
- 伦理和法规:制定相应的伦理标准和法规,以确保AI在医疗领域的安全使用。
通过解决这些挑战,AI在制药行业的应用将更加广泛和深入,最终推动医疗行业的革新。
参考文献
- Computational screening for active compounds targeting protein sequences: methodology and experimental validation. - Fei Wang;Dongxiang Liu;Heyao Wang;Cheng Luo;Mingyue Zheng;Hong Liu;Weiliang Zhu;Xiaomin Luo;Jian Zhang;Hualiang Jiang - Journal of chemical information and modeling (2011)
- Artificial intelligence in drug combination therapy. - Igor F Tsigelny - Briefings in bioinformatics (2019)
- Artificial intelligence in nanotechnology. - G M Sacha;P Varona - Nanotechnology (2013)
- DeepDTA: deep drug-target binding affinity prediction. - Hakime Öztürk;Arzucan Özgür;Elif Ozkirimli - Bioinformatics (Oxford, England) (2018)
- Advancing Drug Discovery via Artificial Intelligence. - H C Stephen Chan;Hanbin Shan;Thamani Dahoun;Horst Vogel;Shuguang Yuan - Trends in pharmacological sciences (2019)
- Advancing Computational Toxicology in the Big Data Era by Artificial Intelligence: Data-Driven and Mechanism-Driven Modeling for Chemical Toxicity. - Heather L Ciallella;Hao Zhu - Chemical research in toxicology (2019)
- Computational modeling for formulation design. - Chetan Hasmukh Mehta;Reema Narayan;Usha Y Nayak - Drug discovery today (2019)
- A quality by design approach using artificial intelligence techniques to control the critical quality attributes of ramipril tablets manufactured by wet granulation. - Buket Aksu;Anant Paradkar;Marcel de Matas;Özgen Özer;Tamer Güneri;Peter York - Pharmaceutical development and technology (2013)
- End-to-End Differentiable Learning of Protein Structure. - Mohammed AlQuraishi - Cell systems (2019)
- Reinforced Adversarial Neural Computer for de Novo Molecular Design. - Evgeny Putin;Arip Asadulaev;Yan Ivanenkov;Vladimir Aladinskiy;Benjamin Sanchez-Lengeling;Alán Aspuru-Guzik;Alex Zhavoronkov - Journal of chemical information and modeling (2018)
引用本文的文献
- Challenges and advances in clinical applications of mesenchymal stromal cells. - Tian Zhou;Zenan Yuan;Jianyu Weng;Duanqing Pei;Xin Du;Chang He;Peilong Lai - Journal of hematology & oncology (2021)
- Presenting artificial intelligence, deep learning, and machine learning studies to clinicians and healthcare stakeholders: an introductory reference with a guideline and a Clinical AI Research (CAIR) checklist proposal. - Jakub Olczak;John Pavlopoulos;Jasper Prijs;Frank F A Ijpma;Job N Doornberg;Claes Lundström;Joel Hedlund;Max Gordon - Acta orthopaedica (2021)
- Enhancing Clinical Translation of Cancer Using Nanoinformatics. - Madjid Soltani;Farshad Moradi Kashkooli;Mohammad Souri;Samaneh Zare Harofte;Tina Harati;Atefeh Khadem;Mohammad Haeri Pour;Kaamran Raahemifar - Cancers (2021)
- Evolving scenario of big data and Artificial Intelligence (AI) in drug discovery. - Manish Kumar Tripathi;Abhigyan Nath;Tej P Singh;A S Ethayathulla;Punit Kaur - Molecular diversity (2021)
- Emerging Therapeutic Potential of SIRT6 Modulators. - Francesco Fiorentino;Antonello Mai;Dante Rotili - Journal of medicinal chemistry (2021)
- AI-based language models powering drug discovery and development. - Zhichao Liu;Ruth A Roberts;Madhu Lal-Nag;Xi Chen;Ruili Huang;Weida Tong - Drug discovery today (2021)
- Current Status of Baricitinib as a Repurposed Therapy for COVID-19. - Maha Saber-Ayad;Sarah Hammoudeh;Eman Abu-Gharbieh;Rifat Hamoudi;Hamadeh Tarazi;Taleb H Al-Tel;Qutayba Hamid - Pharmaceuticals (Basel, Switzerland) (2021)
- Artificial Intelligence in Surveillance, Diagnosis, Drug Discovery and Vaccine Development against COVID-19. - Gunjan Arora;Jayadev Joshi;Rahul Shubhra Mandal;Nitisha Shrivastava;Richa Virmani;Tavpritesh Sethi - Pathogens (Basel, Switzerland) (2021)
- Blockchain and artificial intelligence technology in e-Health. - Priti Tagde;Sandeep Tagde;Tanima Bhattacharya;Pooja Tagde;Hitesh Chopra;Rokeya Akter;Deepak Kaushik;Md Habibur Rahman - Environmental science and pollution research international (2021)
- Computational healthcare: Present and future perspectives (Review). - Ayumu Asai;Masamitsu Konno;Masateru Taniguchi;Andrea Vecchione;Hideshi Ishii - Experimental and therapeutic medicine (2021)
... (346 更多 篇文献)
© 2025 MaltSci 麦伴科研 - 我们用人工智能技术重塑科研
