Skip to content

Synthetic alternatives to Matrigel.

文献信息

DOI10.1038/s41578-020-0199-8
PMID32953138
期刊Nature reviews. Materials
影响因子86.2
JCR 分区Q1
发表年份2020
被引次数401
关键词合成支架, Matrigel, 细胞培养
文献类型Journal Article
ISSN2058-8437
页码539-551
期号5(7)
作者Elizabeth A Aisenbrey, William L Murphy

一句话小结

本综述探讨了Matrigel在细胞培养和再生医学中的应用及其局限性,指出其成分复杂性导致的实验不确定性和可重复性问题,并讨论了合成支架作为无异种、可调且可重复的替代品的潜力及其未来发展方向。研究强调了在细胞生物学和药物发现中,合成支架能够提供更可靠的实验环境,推动相关领域的进步。

在麦伴科研 (maltsci.com) 搜索更多文献

合成支架 · Matrigel · 细胞培养

摘要

Matrigel是一种从恩格尔布雷特-霍尔姆-斯瓦姆小鼠肉瘤中提取的基膜基质,已经在多种细胞培养应用中使用超过四十年。然而,由于其复杂、不明确和可变的成分,Matrigel在细胞生物学、治疗性细胞制造和药物发现中的应用受到限制。Matrigel在单个批次内以及不同批次之间的机械和生化特性变异,导致了细胞培养实验中的不确定性和缺乏可重复性。此外,Matrigel不利于物理或生化操作,使得微调基质以促进预期的细胞行为和实现特定生物学结果变得困难。近期合成支架的进展促成了无异种、化学定义、高度可调和可重复的替代品的开发。在本综述中,我们评估了Matrigel在细胞培养、再生医学和类器官组装中的应用,详细阐述了Matrigel的局限性,并强调了已显示出相当或更优结果的合成支架替代品。此外,我们讨论了限制从Matrigel向合成支架全面过渡的障碍,并简要展望了合成支架在细胞培养应用中的未来发展方向。

英文摘要

Matrigel, a basement-membrane matrix extracted from Engelbreth-Holm-Swarm mouse sarcomas, has been used for more than four decades for a myriad of cell culture applications. However, Matrigel is limited in its applicability to cellular biology, therapeutic cell manufacturing and drug discovery owing to its complex, ill-defined and variable composition. Variations in the mechanical and biochemical properties within a single batch of Matrigel - and between batches - have led to uncertainty in cell culture experiments and a lack of reproducibility. Moreover, Matrigel is not conducive to physical or biochemical manipulation, making it difficult to fine-tune the matrix to promote intended cell behaviours and achieve specific biological outcomes. Recent advances in synthetic scaffolds have led to the development of xenogenic-free, chemically defined, highly tunable and reproducible alternatives. In this Review, we assess the applications of Matrigel in cell culture, regenerative medicine and organoid assembly, detailing the limitations of Matrigel and highlighting synthetic scaffold alternatives that have shown equivalent or superior results. Additionally, we discuss the hurdles that are limiting a full transition from Matrigel to synthetic scaffolds and provide a brief perspective on the future directions of synthetic scaffolds for cell culture applications.

麦伴智能科研服务

智能阅读回答你对文献的任何问题,帮助理解文献中的复杂图表和公式
定位观点定位某个观点在文献中的蛛丝马迹
加入知识库完成数据提取,报告撰写等更多高级知识挖掘功能

主要研究问题

  1. 目前有哪些具体的合成支架被开发出来以替代Matrigel,它们在细胞培养中的表现如何?
  2. 合成支架在再生医学和器官样本组装中的应用与Matrigel相比有哪些优势和劣势?
  3. 在转向合成支架的过程中,研究人员面临哪些技术和法规上的挑战?
  4. 合成支架的可调性如何影响细胞行为的调控和生物学结果的实现?
  5. 有哪些未来的研究方向可以进一步推动合成支架在细胞培养应用中的发展?

核心洞察

研究背景和目的

Matrigel是一种从小鼠肿瘤中提取的基底膜基质,已被广泛用于细胞培养,但由于其复杂和不确定的成分,限制了其在细胞生物学、治疗细胞制造和药物发现中的应用。本研究旨在评估Matrigel的局限性,并介绍合成支架作为替代方案的潜力。

主要方法/材料/实验设计

研究采用文献综述的方法,比较了Matrigel与多种合成支架在细胞培养、再生医学和类器官组装中的应用。

Mermaid diagram

关键结果和发现

  1. Matrigel的局限性

    • 组成复杂且批次间变异大,导致实验结果不一致。
    • 可能含有外源性污染物,影响细胞行为和实验结果。
    • 物理和生化特性难以调节,限制了其在特定应用中的效果。
  2. 合成支架的优势

    • 合成支架提供化学定义的环境,可调节的机械和生化特性。
    • 在干细胞培养、再生医学和类器官组装中表现出优于Matrigel的效果。
    • 合成支架的应用消除了Matrigel的变异性,提供了更高的可重复性和可控性。

主要结论/意义/创新性

合成支架作为Matrigel的替代品,展现出在细胞培养、再生医学和类器官研究中的广泛应用潜力。它们的可调节性和化学定义特性使得研究者能够更好地控制细胞微环境,从而提高实验的可重复性和结果的可靠性。

研究局限性和未来方向

  • 尽管合成支架在多个领域显示出优势,但仍需解决成本高、合成复杂等问题。
  • 未来研究应集中在开发更具成本效益的合成材料,并优化其在临床应用中的可用性。
  • 需要更多的实验来进一步验证合成支架在不同细胞类型和应用中的效果,以推动其在再生医学和药物发现中的广泛应用。

参考文献

  1. Synthetic hydrogels for human intestinal organoid generation and colonic wound repair. - Ricardo Cruz-Acuña;Miguel Quirós;Attila E Farkas;Priya H Dedhia;Sha Huang;Dorothée Siuda;Vicky García-Hernández;Alyssa J Miller;Jason R Spence;Asma Nusrat;Andrés J García - Nature cell biology (2017)
  2. Identification of endothelial cell binding sites on the laminin gamma 1 chain. - M L Ponce;M Nomizu;M C Delgado;Y Kuratomi;M P Hoffman;S Powell;Y Yamada;H K Kleinman;K M Malinda - Circulation research (1999)
  3. Heparin-based hydrogels induce human renal tubulogenesis in vitro. - Heather M Weber;Mikhail V Tsurkan;Valentina Magno;Uwe Freudenberg;Carsten Werner - Acta biomaterialia (2017)
  4. Human pluripotent stem cell culture: considerations for maintenance, expansion, and therapeutics. - Kevin G Chen;Barbara S Mallon;Ronald D G McKay;Pamela G Robey - Cell stem cell (2014)
  5. Immobilization of Cell-Adhesive Laminin Peptides in Degradable PEGDA Hydrogels Influences Endothelial Cell Tubulogenesis. - Saniya Ali;Jennifer E Saik;Dan J Gould;Mary E Dickinson;Jennifer L West - BioResearch open access (2013)
  6. Human cerebral organoids recapitulate gene expression programs of fetal neocortex development. - J Gray Camp;Farhath Badsha;Marta Florio;Sabina Kanton;Tobias Gerber;Michaela Wilsch-Bräuninger;Eric Lewitus;Alex Sykes;Wulf Hevers;Madeline Lancaster;Juergen A Knoblich;Robert Lachmann;Svante Pääbo;Wieland B Huttner;Barbara Treutlein - Proceedings of the National Academy of Sciences of the United States of America (2015)
  7. Perlecan--a multifunctional extracellular proteoglycan scaffold. - Mary C Farach-Carson;Daniel D Carson - Glycobiology (2007)
  8. Single-cell PCR analysis of murine embryonic stem cells cultured on different substrates highlights heterogeneous expression of stem cell markers. - Chiara Franzin;Martina Piccoli;Elena Serena;Enrica Bertin;Luca Urbani;Camilla Luni;Valerie Pasqualetto;Simon Eaton;Nicola Elvassore;Paolo De Coppi;Michela Pozzobon - Biology of the cell (2013)
  9. The elastic modulus of Matrigel as determined by atomic force microscopy. - Shauheen S Soofi;Julie A Last;Sara J Liliensiek;Paul F Nealey;Christopher J Murphy - Journal of structural biology (2009)
  10. PEG hydrogels for the controlled release of biomolecules in regenerative medicine. - Chien-Chi Lin;Kristi S Anseth - Pharmaceutical research (2009)

引用本文的文献

  1. Translating Embryogenesis to Generate Organoids: Novel Approaches to Personalized Medicine. - Sounak Sahu;Shyam K Sharan - iScience (2020)
  2. Engineered tissues and strategies to overcome challenges in drug development. - Andrew S Khalil;Rudolf Jaenisch;David J Mooney - Advanced drug delivery reviews (2020)
  3. Screening method to identify hydrogel formulations that facilitate myotube formation from encapsulated primary myoblasts. - Dhananjay V Deshmukh;Nils Pasquero;Gajraj Rathore;Joel Zvick;Ori Bar-Nur;Jurg Dual;Mark W Tibbitt - Bioengineering & translational medicine (2020)
  4. A materials-science perspective on tackling COVID-19. - Zhongmin Tang;Na Kong;Xingcai Zhang;Yuan Liu;Ping Hu;Shan Mou;Peter Liljeström;Jianlin Shi;Weihong Tan;Jong Seung Kim;Yihai Cao;Robert Langer;Kam W Leong;Omid C Farokhzad;Wei Tao - Nature reviews. Materials (2020)
  5. Optimal, Large-Scale Propagation of Mouse Mammary Tumor Organoids. - Emma D Wrenn;Breanna M Moore;Erin Greenwood;Margaux McBirney;Kevin J Cheung - Journal of mammary gland biology and neoplasia (2020)
  6. Developmentally-Inspired Biomimetic Culture Models to Produce Functional Islet-Like Cells From Pluripotent Precursors. - Raymond Tran;Christopher Moraes;Corinne A Hoesli - Frontiers in bioengineering and biotechnology (2020)
  7. Natural and Synthetic Biomaterials for Engineering Multicellular Tumor Spheroids. - Advika Kamatar;Gokhan Gunay;Handan Acar - Polymers (2020)
  8. From 2D to 3D Cancer Cell Models-The Enigmas of Drug Delivery Research. - Indra Van Zundert;Beatrice Fortuni;Susana Rocha - Nanomaterials (Basel, Switzerland) (2020)
  9. Intestinal Morphogenesis in Development, Regeneration, and Disease: The Potential Utility of Intestinal Organoids for Studying Compartmentalization of the Crypt-Villus Structure. - Ohman Kwon;Tae-Su Han;Mi-Young Son - Frontiers in cell and developmental biology (2020)
  10. Engineering a Chemically Defined Hydrogel Bioink for Direct Bioprinting of Microvasculature. - Ryan W Barrs;Jia Jia;Michael Ward;Dylan J Richards;Hai Yao;Michael J Yost;Ying Mei - Biomacromolecules (2021)

... (391 更多 篇文献)


© 2025 MaltSci 麦伴科研 - 我们用人工智能技术重塑科研