Appearance
Mechano-bactericidal actions of nanostructured surfaces.
文献信息
| DOI | 10.1038/s41579-020-0414-z |
|---|---|
| PMID | 32807981 |
| 期刊 | Nature reviews. Microbiology |
| 影响因子 | 103.3 |
| JCR 分区 | Q1 |
| 发表年份 | 2021 |
| 被引次数 | 125 |
| 关键词 | 抗生素耐药性, 纳米结构表面, 生物膜形成, 物理机械相互作用 |
| 文献类型 | Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't, Review |
| ISSN | 1740-1526 |
| 页码 | 8-22 |
| 期号 | 19(1) |
| 作者 | Denver P Linklater, Vladimir A Baulin, Saulius Juodkazis, Russell J Crawford, Paul Stoodley, Elena P Ivanova |
一句话小结
本研究探讨了抗生素抗性日益严重的背景下,纳米结构表面在防止细菌定植和生物膜形成方面的潜在应用,强调了表面粗糙度和纳米图案对细菌细胞膜的物理机械作用能够有效杀灭细菌或阻止其附着的机制。这一发现为开发新型抗菌材料提供了重要的理论基础和应用前景,有助于应对抗生素抗性带来的全球健康挑战。
在麦伴科研 (maltsci.com) 搜索更多文献
抗生素耐药性 · 纳米结构表面 · 生物膜形成 · 物理机械相互作用
摘要
抗生素抗性是全球人类健康面临的威胁,导致常规细菌感染治疗变得愈加困难。这个问题因细菌病原体在体内医疗和牙科设备表面形成生物膜而加剧,这些生物膜使细菌对抗生素产生高度耐受性。新型抗菌纳米结构表面的发展在医学应用中展现出良好的前景,成为下一代生物材料。这些纳米结构表面与细菌之间的物理机械相互作用可以导致细菌的杀灭或阻止细菌附着及随后的生物膜形成,因此在防止细菌感染方面具有良好的应用前景。本综述探讨了表面粗糙度在纳米尺度上对合成材料细菌定植的阻止作用,并对不同表面纳米图案通过施加必要的物理机械力在细菌细胞膜上导致最终的细胞死亡的机制进行了分类。
英文摘要
Antibiotic resistance is a global human health threat, causing routine treatments of bacterial infections to become increasingly difficult. The problem is exacerbated by biofilm formation by bacterial pathogens on the surfaces of indwelling medical and dental devices that facilitate high levels of tolerance to antibiotics. The development of new antibacterial nanostructured surfaces shows excellent prospects for application in medicine as next-generation biomaterials. The physico-mechanical interactions between these nanostructured surfaces and bacteria lead to bacterial killing or prevention of bacterial attachment and subsequent biofilm formation, and thus are promising in circumventing bacterial infections. This Review explores the impact of surface roughness on the nanoscale in preventing bacterial colonization of synthetic materials and categorizes the different mechanisms by which various surface nanopatterns exert the necessary physico-mechanical forces on the bacterial cell membrane that will ultimately result in cell death.
麦伴智能科研服务
主要研究问题
- 纳米结构表面的物理机械作用如何影响不同类型细菌的抗药性?
- 在医疗和牙科设备中,如何优化纳米结构表面的设计以提高抗菌效果?
- 除了表面粗糙度,哪些其他因素可能影响纳米结构表面对细菌的杀灭效果?
- 目前在纳米结构抗菌材料的研究中,存在哪些主要的挑战和未来的研究方向?
- 如何评估不同纳米结构表面在临床应用中的长期有效性和安全性?
核心洞察
1. 研究背景和目的
抗生素耐药性已成为全球人类健康的重大威胁,使得常规细菌感染的治疗变得愈加困难。尤其是在医疗和牙科设备的表面上,细菌病原体的生物膜形成进一步加剧了抗生素的耐受性问题。因此,开发新型抗菌纳米结构表面被认为是医学领域中下一代生物材料的有希望的应用。本文旨在探讨纳米结构表面的物理-机械相互作用如何影响细菌的附着和生物膜的形成,从而提供有效的抗菌策略。
2. 主要方法和发现
研究回顾了表面粗糙度在纳米尺度上对合成材料防止细菌定植的影响。通过分类不同的表面纳米图案,研究分析了这些图案如何通过施加物理-机械力作用于细菌细胞膜,进而导致细菌死亡。发现不同的纳米结构可以有效地破坏细菌细胞膜的完整性,抑制细菌的附着和生物膜的形成,显示出纳米结构表面在抗击细菌感染方面的潜力。
3. 核心结论
纳米结构表面通过物理-机械方式对细菌细胞膜施加力量,能够有效地实现细菌的杀灭或避免其附着。这种机制为新型抗菌材料的开发提供了理论基础,展示了其在医疗应用中的广泛前景。尤其是在对抗抗生素耐药性细菌感染方面,纳米结构表面展现出重要的应用价值。
4. 研究意义和影响
本研究的意义在于为解决抗生素耐药性问题提供了新的思路和方法,强调了物理-机械特性在抗菌材料开发中的关键作用。随着对生物膜和细菌附着机制的深入理解,未来的生物材料能够更有效地预防和控制感染,减少医疗设备相关感染的发生率。这一研究不仅推动了抗菌材料的创新,也为临床治疗提供了新的解决方案,具有深远的社会和经济影响。
参考文献
- The significance of infection related to orthopedic devices and issues of antibiotic resistance. - Davide Campoccia;Lucio Montanaro;Carla Renata Arciola - Biomaterials (2006)
- The antibiotic resistance crisis: part 1: causes and threats. - C Lee Ventola - P & T : a peer-reviewed journal for formulary management (2015)
- A review of the biomaterials technologies for infection-resistant surfaces. - Davide Campoccia;Lucio Montanaro;Carla Renata Arciola - Biomaterials (2013)
- Recent developments in smart antibacterial surfaces to inhibit biofilm formation and bacterial infections. - Xi Li;Biao Wu;Hao Chen;Kaihui Nan;Yingying Jin;Lin Sun;Bailiang Wang - Journal of materials chemistry. B (2018)
- A critical review of multifunctional titanium surfaces: New frontiers for improving osseointegration and host response, avoiding bacteria contamination. - Silvia Spriano;Seiji Yamaguchi;Francesco Baino;Sara Ferraris - Acta biomaterialia (2018)
- Review of titanium surface modification techniques and coatings for antibacterial applications. - H Chouirfa;H Bouloussa;V Migonney;C Falentin-Daudré - Acta biomaterialia (2019)
- Effectiveness of gentamicin-containing collagen sponges for prevention of surgical site infection after hip arthroplasty: a multicenter randomized trial. - Marianne Westberg;Frede Frihagen;Ole-Christian Brun;Wender Figved;Bjarne Grøgaard;Haldor Valland;Helge Wangen;Finnur Snorrason - Clinical infectious diseases : an official publication of the Infectious Diseases Society of America (2015)
- Gentamicin release from polymethylmethacrylate bone cements and Staphylococcus aureus biofilm formation. - H van de Belt;D Neut;W Schenk;J R van Horn;H C van der Mei;H J Busscher - Acta orthopaedica Scandinavica (2000)
- The relationship between the nanostructure of titanium surfaces and bacterial attachment. - Sabrina D Puckett;Erik Taylor;Theresa Raimondo;Thomas J Webster - Biomaterials (2010)
- Nanofabrication of mechano-bactericidal surfaces. - Denver P Linklater;Saulius Juodkazis;Elena P Ivanova - Nanoscale (2017)
引用本文的文献
- Second Harmonic Generation from Phase-Engineered Metasurfaces of Nanoprisms. - Kanta Mochizuki;Mako Sugiura;Hirofumi Yogo;Stefan Lundgaard;Jingwen Hu;Soon Hock Ng;Yoshiaki Nishijima;Saulius Juodkazis;Atsushi Sugita - Micromachines (2020)
- Nanomaterials arising amid antibiotic resistance. - Weiwei Gao;Liangfang Zhang - Nature reviews. Microbiology (2021)
- Adhesion of Escherichia Coli to Nanostructured Surfaces and the Role of Type 1 Fimbriae. - Pawel Kallas;Håvard J Haugen;Nikolaj Gadegaard;John Stormonth-Darling;Mats Hulander;Martin Andersson;Håkon Valen - Nanomaterials (Basel, Switzerland) (2020)
- A trilogy antimicrobial strategy for multiple infections of orthopedic implants throughout their life cycle. - Yikai Wang;Wangsiyuan Teng;Zengjie Zhang;Xingzhi Zhou;Yuxiao Ye;Peng Lin;An Liu;Yan Wu;Binghao Li;Chongda Zhang;Xianyan Yang;Weixu Li;Xiaohua Yu;Zhongru Gou;Zhaoming Ye - Bioactive materials (2021)
- Cell Rupture and Morphogenesis Control of the Dimorphic Yeast Candida albicans by Nanostructured Surfaces. - Naga Venkatesh Kollu;Dennis R LaJeunesse - ACS omega (2021)
- Topographical nanostructures for physical sterilization. - Yujie Cai;Wei Bing;Xiao Xu;Yuqi Zhang;Zhaowei Chen;Zhen Gu - Drug delivery and translational research (2021)
- Diversity of experimental designs for the fabrication of antifungal surfaces for the built environment. - Arturo Aburto-Medina;Phuc Hoang Le;Shane MacLaughlin;Elena Ivanova - Applied microbiology and biotechnology (2021)
- Engineering biomaterials to prevent post-operative infection and fibrosis. - Aditya Josyula;Kunal S Parikh;Ian Pitha;Laura M Ensign - Drug delivery and translational research (2021)
- Silver nanoparticles from insect wing extract: Biosynthesis and evaluation for antioxidant and antimicrobial potential. - Parameshwar Jakinala;Nageshwar Lingampally;Bee Hameeda;R Z Sayyed;Yahya Khan M;Elsayed Ahmed Elsayed;Hesham El Enshasy - PloS one (2021)
- Resistance and Adaptation of Bacteria to Non-Antibiotic Antibacterial Agents: Physical Stressors, Nanoparticles, and Bacteriophages. - Sada Raza;Kinga Matuła;Sylwia Karoń;Jan Paczesny - Antibiotics (Basel, Switzerland) (2021)
... (115 更多 篇文献)
© 2025 MaltSci 麦伴科研 - 我们用人工智能技术重塑科研
