Skip to content

A second generation leishmanization vaccine with a markerless attenuated Leishmania major strain using CRISPR gene editing.

文献信息

DOI10.1038/s41467-020-17154-z
PMID32651371
期刊Nature communications
影响因子15.7
JCR 分区Q1
发表年份2020
被引次数52
关键词利什曼病, 疫苗, CRISPR基因编辑, Leishmania major, 免疫应答
文献类型Journal Article, Research Support, N.I.H., Intramural, Research Support, Non-U.S. Gov't, Research Support, U.S. Gov't, P.H.S.
ISSN2041-1723
页码3461
期号11(1)
作者Wen-Wei Zhang, Subir Karmakar, Sreenivas Gannavaram, Ranadhir Dey, Patrick Lypaczewski, Nevien Ismail, Abid Siddiqui, Vahan Simonyan, Fabiano Oliveira, Iliano V Coutinho-Abreu, Thiago DeSouza-Vieira, Claudio Meneses, James Oristian, Tiago D Serafim, Abu Musa, Risa Nakamura, Noushin Saljoughian, Greta Volpedo, Monika Satoskar, Sanika Satoskar, Pradeep K Dagur, J Philip McCoy, Shaden Kamhawi, Jesus G Valenzuela, Shinjiro Hamano, Abhay R Satoskar, Greg Matlashewski, Hira L Nakhasi

一句话小结

本研究提出了一种新型的利什曼病疫苗接种方法,利用CRISPR基因组编辑的利什曼原虫大株(LmCen-/-),该株在小鼠实验中显示出安全性和有效性,能够有效抵御沙蝇挑战且不引起明显的皮肤损伤。此研究为开发安全且有效的人类疫苗提供了新思路,具有重要的临床应用潜力。

在麦伴科研 (maltsci.com) 搜索更多文献

利什曼病 · 疫苗 · CRISPR基因编辑 · Leishmania major · 免疫应答

摘要

利什曼病是一种被忽视的热带疾病,由利什曼原虫引起,主要通过感染的沙蝇传播。通过活的利什曼原虫(利什曼原虫大株)进行的疫苗接种(称为利什曼化)曾被成功使用,但由于会偶尔导致皮肤损伤,现已不再实践。本文描述了一种第二代利什曼化方法,采用CRISPR基因组编辑的利什曼原虫大株(LmCen-/-)。值得注意的是,LmCen-/-是一种经过基因工程改造的中心蛋白基因敲除突变株,不含抗生素抗性标记,并且没有可检测的脱靶突变。接种LmCen-/-的小鼠在遭遇感染了利什曼原虫的沙蝇挑战后没有出现明显的损伤,而未接种的动物则会出现大面积且逐渐扩大的损伤,同时寄生虫负荷比接种组高出两个数量级。LmCen-/-的免疫接种可提供保护,并产生与利什曼化相当的免疫应答。LmCen-/-是安全的,因为它无法在免疫受损的小鼠中引发疾病,并能有效抵御沙蝇挑战,同时由于其不含标记,可以推进至人类疫苗试验。

英文摘要

Leishmaniasis is a neglected tropical disease caused by Leishmania protozoa transmitted by infected sand flies. Vaccination through leishmanization with live Leishmania major has been used successfully but is no longer practiced because it resulted in occasional skin lesions. A second generation leishmanization is described here using a CRISPR genome edited L. major strain (LmCen-/-). Notably, LmCen-/- is a genetically engineered centrin gene knock-out mutant strain that is antibiotic resistant marker free and does not have detectable off-target mutations. Mice immunized with LmCen-/- have no visible lesions following challenge with L. major-infected sand flies, while non-immunized animals develop large and progressive lesions with a 2-log fold higher parasite burden. LmCen-/- immunization results in protection and an immune response comparable to leishmanization. LmCen-/- is safe since it is unable to cause disease in immunocompromised mice, induces robust host protection against vector sand fly challenge and because it is marker free, can be advanced to human vaccine trials.

麦伴智能科研服务

智能阅读回答你对文献的任何问题,帮助理解文献中的复杂图表和公式
定位观点定位某个观点在文献中的蛛丝马迹
加入知识库完成数据提取,报告撰写等更多高级知识挖掘功能

主要研究问题

  1. 这种第二代疫苗在不同动物模型中的免疫效果如何,与传统的疫苗相比有什么优势?
  2. CRISPR基因编辑技术在其他寄生虫疫苗开发中是否有类似的应用案例?
  3. 该疫苗在临床试验阶段可能面临哪些伦理和安全性挑战?
  4. 如何评估LmCen-/-疫苗对不同人群(如儿童、老年人或免疫缺陷者)的保护效果?
  5. 未来在疫苗研发中,是否有可能结合其他技术(如mRNA疫苗)来提高对Leishmania的免疫反应?

核心洞察

研究背景和目的

利什曼病是一种由利什曼原虫引起的被忽视的热带病,主要通过受感染的沙蝇传播。虽然以活体利什曼原虫为基础的免疫接种(leishmanization)曾在中东和前苏联国家取得成功,但由于安全性问题而不再使用。本研究旨在开发一种第二代的免疫接种策略,利用CRISPR基因编辑技术生成一种无标记的减毒利什曼原虫(LmCen−/−)疫苗,以提供有效的免疫保护,同时避免皮肤损伤。

主要方法/材料/实验设计

本研究采用CRISPR-Cas基因编辑技术生成LmCen−/−减毒株,具体步骤如下:

Mermaid diagram
  1. 基因编辑:设计针对centrin基因的引导RNA,转染至利什曼原虫中以实现基因缺失。
  2. 筛选突变体:通过生长速率筛选获得缺失centrin基因的慢生长克隆。
  3. 安全性评估:在小鼠模型中评估LmCen−/−的安全性,观察是否引发皮肤损伤。
  4. 免疫和挑战实验:对小鼠进行LmCen−/−免疫接种,随后挑战野生型利什曼原虫,评估免疫保护效果。

关键结果和发现

  1. 安全性:LmCen−/−在免疫缺陷小鼠中未引发皮肤损伤,显示出良好的安全性。
  2. 免疫保护:LmCen−/−免疫接种小鼠在挑战实验中表现出与传统leishmanization相似的免疫保护效果,显著减少了皮肤损伤和寄生虫负荷。
  3. 免疫应答:LmCen−/−免疫接种诱导了强烈的CD4+ T细胞免疫应答,主要通过IFN-γ和IL-12介导。

主要结论/意义/创新性

本研究首次成功开发出一种无标记的减毒利什曼原虫疫苗(LmCen−/−),并证明其在小鼠模型中具有良好的安全性和有效的免疫保护能力。此疫苗有潜力用于人类临床试验,为利什曼病的疫苗研发提供了新的方向。

研究局限性和未来方向

  1. 局限性:本研究主要在小鼠模型中进行,尚需在更复杂的生物体内进行验证。
  2. 未来方向:后续研究应集中于评估LmCen−/−疫苗在不同宿主中的免疫保护效果,以及其在临床应用中的安全性和有效性。
部分内容
研究背景和目的开发无标记的利什曼疫苗以提高安全性和免疫效果
主要方法CRISPR-Cas基因编辑生成LmCen−/−,进行小鼠免疫实验
关键结果LmCen−/−安全且有效,诱导强免疫应答
主要结论该疫苗有望用于人类临床试验,可能改变利什曼病的防治
研究局限性主要在小鼠模型中,需在其他生物体中验证
未来方向评估临床应用中的安全性和有效性

参考文献

  1. Transmission of cutaneous leishmaniasis by sand flies is enhanced by regurgitation of fPPG. - Matthew E Rogers;Thomas Ilg;Andrei V Nikolaev;Michael A J Ferguson;Paul A Bates - Nature (2004)
  2. KSAC, a defined Leishmania antigen, plus adjuvant protects against the virulence of L. major transmitted by its natural vector Phlebotomus duboscqi. - Regis Gomes;Clarissa Teixeira;Fabiano Oliveira;Phillip G Lawyer;Dia-Eldin Elnaiem;Claudio Meneses;Yasuyuki Goto;Ajay Bhatia;Randall F Howard;Steven G Reed;Jesus G Valenzuela;Shaden Kamhawi - PLoS neglected tropical diseases (2012)
  3. Vaccination using live attenuated Leishmania donovani centrin deleted parasites induces protection in dogs against Leishmania infantum. - Jacqueline Araújo Fiuza;Sreenivas Gannavaram;Helton da Costa Santiago;Angamuthu Selvapandiyan;Daniel Menezes Souza;Lívia Silva Araújo Passos;Ludmila Zanandreis de Mendonça;Denise da Silveira Lemos-Giunchetti;Natasha Delaqua Ricci;Daniella Castanheira Bartholomeu;Rodolfo Cordeiro Giunchetti;Lilian Lacerda Bueno;Rodrigo Correa-Oliveira;Hira L Nakhasi;Ricardo Toshio Fujiwara - Vaccine (2015)
  4. In vivo imaging reveals an essential role for neutrophils in leishmaniasis transmitted by sand flies. - Nathan C Peters;Jackson G Egen;Nagila Secundino;Alain Debrabant;Nicola Kimblin;Shaden Kamhawi;Phillip Lawyer;Michael P Fay;Ronald N Germain;David Sacks - Science (New York, N.Y.) (2008)
  5. Central memory T cells mediate long-term immunity to Leishmania major in the absence of persistent parasites. - Colby Zaph;Jude Uzonna;Stephen M Beverley;Phillip Scott - Nature medicine (2004)
  6. Research priorities for elimination of visceral leishmaniasis. - Greg Matlashewski;Byron Arana;Axel Kroeger;Ahmed Be-Nazir;Dinesh Mondal;Shan Golam Nabi;Megha Raj Banjara;Murari Lal Das;Baburam Marasini;Pradeep Das;Graham Medley;Abhay Satoskar;Hira Nakhasi;Daniel Argaw;John Reeder;Piero Olliaro - The Lancet. Global health (2014)
  7. Leishmaniasis worldwide and global estimates of its incidence. - Jorge Alvar;Iván D Vélez;Caryn Bern;Mercé Herrero;Philippe Desjeux;Jorge Cano;Jean Jannin;Margriet den Boer; - PloS one (2012)
  8. Centrin gene disruption impairs stage-specific basal body duplication and cell cycle progression in Leishmania. - Angamuthu Selvapandiyan;Alain Debrabant;Robert Duncan;Jacqueline Muller;Poonam Salotra;Gannavaram Sreenivas;Jeffrey L Salisbury;Hira L Nakhasi - The Journal of biological chemistry (2004)
  9. Cutaneous leishmaniasis: immune responses in protection and pathogenesis. - Phillip Scott;Fernanda O Novais - Nature reviews. Immunology (2016)
  10. BEDTools: a flexible suite of utilities for comparing genomic features. - Aaron R Quinlan;Ira M Hall - Bioinformatics (Oxford, England) (2010)

引用本文的文献

  1. Human Vaccines & Immunotherapeutics: news. - Human vaccines & immunotherapeutics (2020)
  2. Characterization of a new Leishmania major strain for use in a controlled human infection model. - Helen Ashwin;Jovana Sadlova;Barbora Vojtkova;Tomas Becvar;Patrick Lypaczewski;Eli Schwartz;Elizabeth Greensted;Katrien Van Bocxlaer;Marion Pasin;Kai S Lipinski;Vivak Parkash;Greg Matlashewski;Alison M Layton;Charles J Lacey;Charles L Jaffe;Petr Volf;Paul M Kaye - Nature communications (2021)
  3. Protein methyltransferase 7 deficiency in Leishmania major increases neutrophil associated pathology in murine model. - Juliana Alcoforado Diniz;Mariana M Chaves;Slavica Vaselek;Rubens D Miserani Magalhães;Rafael Ricci-Azevedo;Renan V H de Carvalho;Lucas B Lorenzon;Tiago R Ferreira;Dario Zamboni;Pegine B Walrad;Petr Volf;David L Sacks;Angela K Cruz - PLoS neglected tropical diseases (2021)
  4. Inoculation of the Leishmania infantum HSP70-II Null Mutant Induces Long-Term Protection against L. amazonensis Infection in BALB/c Mice. - Manuel Soto;Laura Ramírez;José Carlos Solana;Emma C L Cook;Elena Hernández-García;José María Requena;Salvador Iborra - Microorganisms (2021)
  5. Revival of Leishmanization and Leishmanin. - Thalia Pacheco-Fernandez;Greta Volpedo;Sreenivas Gannavaram;Parna Bhattacharya;Ranadhir Dey;Abhay Satoskar;Greg Matlashewski;Hira L Nakhasi - Frontiers in cellular and infection microbiology (2021)
  6. Nano- and Microformulations to Advance Therapies for Visceral Leishmaniasis. - Devika M Varma;Elizabeth A Redding;Eric M Bachelder;Kristy M Ainslie - ACS biomaterials science & engineering (2021)
  7. A review of the leishmanin skin test: A neglected test for a neglected disease. - Jessica Carstens-Kass;Kayla Paulini;Patrick Lypaczewski;Greg Matlashewski - PLoS neglected tropical diseases (2021)
  8. Preclinical validation of a live attenuated dermotropic Leishmania vaccine against vector transmitted fatal visceral leishmaniasis. - Subir Karmakar;Nevien Ismail;Fabiano Oliveira;James Oristian;Wen Wei Zhang;Swarnendu Kaviraj;Kamaleshwar P Singh;Abhishek Mondal;Sushmita Das;Krishna Pandey;Parna Bhattacharya;Greta Volpedo;Sreenivas Gannavaram;Monika Satoskar;Sanika Satoskar;Rajiv M Sastry;Timur Oljuskin;Telly Sepahpour;Claudio Meneses;Shinjiro Hamano;Pradeep Das;Greg Matlashewski;Sanjay Singh;Shaden Kamhawi;Ranadhir Dey;Jesus G Valenzuela;Abhay Satoskar;Hira L Nakhasi - Communications biology (2021)
  9. Protective CD4+ Th1 cell-mediated immunity is reliant upon execution of effector function prior to the establishment of the pathogen niche. - Leah S Hohman;Zhirong Mou;Matheus B Carneiro;Gabriel Ferland;Rachel M Kratofil;Paul Kubes;Jude E Uzonna;Nathan C Peters - PLoS pathogens (2021)
  10. Human leishmaniasis vaccines: Use cases, target population and potential global demand. - Stefano Malvolti;Melissa Malhame;Carsten F Mantel;Epke A Le Rutte;Paul M Kaye - PLoS neglected tropical diseases (2021)

... (42 更多 篇文献)


© 2025 MaltSci 麦伴科研 - 我们用人工智能技术重塑科研