Skip to content

AAV-CRISPR Gene Editing Is Negated by Pre-existing Immunity to Cas9.

文献信息

DOI10.1016/j.ymthe.2020.04.017
PMID32348718
期刊Molecular therapy : the journal of the American Society of Gene Therapy
影响因子12.0
JCR 分区Q1
发表年份2020
被引次数117
关键词AAV-CRISPR, CD8+ T细胞, SaCas9, 腺病毒相关病毒, 基因治疗
文献类型Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't, Research Support, U.S. Gov't, Non-P.H.S.
ISSN1525-0016
页码1432-1441
期号28(6)
作者Ang Li, Mark R Tanner, Ciaran M Lee, Ayrea E Hurley, Marco De Giorgi, Kelsey E Jarrett, Timothy H Davis, Alexandria M Doerfler, Gang Bao, Christine Beeton, William R Lagor

一句话小结

本研究探讨了腺病毒相关病毒(AAV)载体在小鼠模型中递送CRISPR-Cas9进行肝脏基因组编辑的有效性,发现尽管能够实现有效编辑,但因先天免疫反应导致CD8+ T细胞增加,进而引发肝细胞凋亡和基因组编辑细胞的消失。该结果对基于CRISPR-Cas9的体内基因组编辑的安全性和有效性提出了重要警示,提示需关注免疫反应对治疗效果的影响。

在麦伴科研 (maltsci.com) 搜索更多文献

AAV-CRISPR · CD8+ T细胞 · SaCas9 · 腺病毒相关病毒 · 基因治疗

摘要

腺病毒相关病毒(AAV)载体是将CRISPR-Cas9用于体内治疗基因组编辑的主要候选者。然而,基于AAV的递送涉及Cas9核酸酶的持续表达,这是一种细菌蛋白。最近的研究表明,在人类中,对常用的来自化脓性链球菌(SpCas9)和金黄色葡萄球菌(SaCas9)的Cas9同源物存在高频率的中和抗体和特异性T细胞。我们在小鼠模型中测试了对SaCas9的先天免疫是否会对使用AAV包装CRISPR-Cas9进行肝脏基因组编辑构成障碍。尽管在具有先天SaCas9免疫的小鼠肝脏中实现了有效的基因组编辑,但这伴随着肝脏中CD8+ T细胞比例的增加。这种细胞毒性T细胞响应的特征表现为肝细胞凋亡、重组AAV基因组的丧失以及基因组编辑细胞的完全消除,随后是肝脏的补偿性再生。我们的研究结果对基于CRISPR-Cas9的体内肝脏基因组编辑的有效性和安全性提出了重要的关注。

英文摘要

Adeno-associated viral (AAV) vectors are a leading candidate for the delivery of CRISPR-Cas9 for therapeutic genome editing in vivo. However, AAV-based delivery involves persistent expression of the Cas9 nuclease, a bacterial protein. Recent studies indicate a high prevalence of neutralizing antibodies and T cells specific to the commonly used Cas9 orthologs from Streptococcus pyogenes (SpCas9) and Staphylococcus aureus (SaCas9) in humans. We tested in a mouse model whether pre-existing immunity to SaCas9 would pose a barrier to liver genome editing with AAV packaging CRISPR-Cas9. Although efficient genome editing occurred in mouse liver with pre-existing SaCas9 immunity, this was accompanied by an increased proportion of CD8+ T cells in the liver. This cytotoxic T cell response was characterized by hepatocyte apoptosis, loss of recombinant AAV genomes, and complete elimination of genome-edited cells, and was followed by compensatory liver regeneration. Our results raise important efficacy and safety concerns for CRISPR-Cas9-based in vivo genome editing in the liver.

麦伴智能科研服务

智能阅读回答你对文献的任何问题,帮助理解文献中的复杂图表和公式
定位观点定位某个观点在文献中的蛛丝马迹
加入知识库完成数据提取,报告撰写等更多高级知识挖掘功能

主要研究问题

  1. 在AAV-CRISPR基因编辑中,如何评估和管理预先存在的对Cas9的免疫反应?
  2. 其他类型的基因编辑工具是否也会受到类似的免疫反应影响?如果有,具体情况如何?
  3. 在临床应用中,如何选择适合的Cas9正交体以降低免疫反应的风险?
  4. 对于AAV载体的使用,有哪些策略可以提高其在有预先免疫反应的患者中的有效性?
  5. 预先存在的免疫反应对AAV-CRISPR基因编辑的长期效果和安全性有何影响?

核心洞察

研究背景和目的

AAV(腺相关病毒)载体是将CRISPR-Cas9用于体内基因编辑的主要候选者。然而,研究表明,许多人对常用的Cas9正交体(如Streptococcus pyogenes的SpCas9和Staphylococcus aureus的SaCas9)存在预先免疫反应。本研究旨在探讨预先存在的SaCas9免疫是否会影响AAV包装的CRISPR-Cas9在小鼠肝脏中的基因编辑效果。

主要方法/材料/实验设计

本研究使用小鼠模型,设计了一个经典的延迟型超敏反应(DTH)实验以建立对SaCas9的免疫记忆。小鼠分为两组,分别接种SaCas9或卵白蛋白(Ova),一周后挑战接种相应抗原,并测量耳部肿胀。接着,两组小鼠接受了AAV-CRISPR(针对低密度脂蛋白受体基因Ldlr)和GFP的共同注射,随后在不同时间点收集肝脏样本进行流式细胞术分析。

Mermaid diagram

关键结果和发现

  1. 免疫记忆建立:小鼠在接种SaCas9后,能快速产生强烈的记忆T细胞反应,表现为耳部肿胀和组织学变化。
  2. 细胞毒性反应:接种SaCas9的小鼠在AAV-CRISPR注射后,肝脏中CD8+ T细胞比例显著增加,导致基因编辑肝细胞的凋亡和肝脏再生。
  3. 基因编辑效果下降:尽管AAV-CRISPR在接种SaCas9的小鼠中最初能够有效进行基因编辑,但在12周后,经过CD8+ T细胞的清除作用,基因编辑的肝细胞几乎完全消失。

主要结论/意义/创新性

本研究表明,预先存在的对SaCas9的免疫反应对AAV-CRISPR在肝脏中的基因编辑产生显著影响。CD8+ T细胞的活化导致了基因编辑细胞的消失,这对基因编辑疗法的有效性和安全性提出了重要的警示。研究强调了在临床试验设计中考虑抗Cas9免疫反应的重要性,并指出需要开发新的基因编辑传递方法。

研究局限性和未来方向

  1. 研究局限性:本研究主要在小鼠模型中进行,实际人类的免疫反应可能更为复杂且具有个体差异。
  2. 未来方向:建议探索使用其他细菌CRISPR-Cas系统,以避免对Cas9的预先免疫反应。此外,开发自我去除的AAV-CRISPR系统或转瞬递送的Cas9 mRNA/蛋白质的方法可能是未来的研究重点。
部分内容
研究背景AAV载体在CRISPR-Cas9基因编辑中的应用受到预先免疫反应的影响。
主要方法通过小鼠模型建立免疫记忆,使用流式细胞术分析免疫反应。
关键发现预先免疫导致CD8+ T细胞增加,基因编辑肝细胞凋亡。
结论预先免疫反应对AAV-CRISPR基因编辑的有效性构成威胁。
未来方向探索新型CRISPR系统和改进的递送方法。

参考文献

  1. Nucleic acid cleavage with a hyperthermophilic Cas9 from an uncultured Ignavibacterium. - Stephanie Tzouanas Schmidt;Feiqiao Brian Yu;Paul C Blainey;Andrew P May;Stephen R Quake - Proceedings of the National Academy of Sciences of the United States of America (2019)
  2. Pre-existing anti-adeno-associated virus antibodies as a challenge in AAV gene therapy. - Vedell Louis Jeune;Jakob A Joergensen;Roger J Hajjar;Thomas Weber - Human gene therapy methods (2013)
  3. Postnatal genome editing partially restores dystrophin expression in a mouse model of muscular dystrophy. - Chengzu Long;Leonela Amoasii;Alex A Mireault;John R McAnally;Hui Li;Efrain Sanchez-Ortiz;Samadrita Bhattacharyya;John M Shelton;Rhonda Bassel-Duby;Eric N Olson - Science (New York, N.Y.) (2016)
  4. Virus infection, antiviral immunity, and autoimmunity. - Daniel R Getts;Emily M L Chastain;Rachael L Terry;Stephen D Miller - Immunological reviews (2013)
  5. In vivo gene editing in dystrophic mouse muscle and muscle stem cells. - Mohammadsharif Tabebordbar;Kexian Zhu;Jason K W Cheng;Wei Leong Chew;Jeffrey J Widrick;Winston X Yan;Claire Maesner;Elizabeth Y Wu;Ru Xiao;F Ann Ran;Le Cong;Feng Zhang;Luk H Vandenberghe;George M Church;Amy J Wagers - Science (New York, N.Y.) (2016)
  6. Therapeutic levels of FVIII following a single peripheral vein administration of rAAV vector encoding a novel human factor VIII variant. - Jenny McIntosh;Peter J Lenting;Cecilia Rosales;Doyoung Lee;Samira Rabbanian;Deepak Raj;Nishil Patel;Edward G D Tuddenham;Olivier D Christophe;John H McVey;Simon Waddington;Arthur W Nienhuis;John T Gray;Paolo Fagone;Federico Mingozzi;Shang-Zhen Zhou;Katherine A High;Maria Cancio;Catherine Y C Ng;Junfang Zhou;Christopher L Morton;Andrew M Davidoff;Amit C Nathwani - Blood (2013)
  7. A dual AAV system enables the Cas9-mediated correction of a metabolic liver disease in newborn mice. - Yang Yang;Lili Wang;Peter Bell;Deirdre McMenamin;Zhenning He;John White;Hongwei Yu;Chenyu Xu;Hiroki Morizono;Kiran Musunuru;Mark L Batshaw;James M Wilson - Nature biotechnology (2016)
  8. CRISPR/Cas9 systems have off-target activity with insertions or deletions between target DNA and guide RNA sequences. - Yanni Lin;Thomas J Cradick;Matthew T Brown;Harshavardhan Deshmukh;Piyush Ranjan;Neha Sarode;Brian M Wile;Paula M Vertino;Frank J Stewart;Gang Bao - Nucleic acids research (2014)
  9. A Self-Deleting AAV-CRISPR System for In Vivo Genome Editing. - Ang Li;Ciaran M Lee;Ayrea E Hurley;Kelsey E Jarrett;Marco De Giorgi;Weiqi Lu;Karol S Balderrama;Alexandria M Doerfler;Harshavardhan Deshmukh;Anirban Ray;Gang Bao;William R Lagor - Molecular therapy. Methods & clinical development (2019)
  10. A Compact, High-Accuracy Cas9 with a Dinucleotide PAM for In Vivo Genome Editing. - Alireza Edraki;Aamir Mir;Raed Ibraheim;Ildar Gainetdinov;Yeonsoo Yoon;Chun-Qing Song;Yueying Cao;Judith Gallant;Wen Xue;Jaime A Rivera-Pérez;Erik J Sontheimer - Molecular cell (2019)

引用本文的文献

  1. Immunity to Cas9 as an Obstacle to Persistent Genome Editing. - Veronica Gough;Charles A Gersbach - Molecular therapy : the journal of the American Society of Gene Therapy (2020)
  2. Ready for Repair? Gene Editing Enters the Clinic for the Treatment of Human Disease. - Martijn P T Ernst;Mike Broeders;Pablo Herrero-Hernandez;Esmee Oussoren;Ans T van der Ploeg;W W M Pim Pijnappel - Molecular therapy. Methods & clinical development (2020)
  3. New Directions in Pulmonary Gene Therapy. - Amber Vu;Paul B McCray - Human gene therapy (2020)
  4. Translating CRISPR-Cas Therapeutics: Approaches and Challenges. - Lavina Sierra Tay;Nathan Palmer;Rebecca Panwala;Wei Leong Chew;Prashant Mali - The CRISPR journal (2020)
  5. Delivery Approaches for Therapeutic Genome Editing and Challenges. - Ilayda Ates;Tanner Rathbone;Callie Stuart;P Hudson Bridges;Renee N Cottle - Genes (2020)
  6. Tools for experimental and computational analyses of off-target editing by programmable nucleases. - X Robert Bao;Yidan Pan;Ciaran M Lee;Timothy H Davis;Gang Bao - Nature protocols (2021)
  7. Design of efficacious somatic cell genome editing strategies for recessive and polygenic diseases. - Jared Carlson-Stevermer;Amritava Das;Amr A Abdeen;David Fiflis;Benjamin I Grindel;Shivani Saxena;Tugce Akcan;Tausif Alam;Heidi Kletzien;Lucille Kohlenberg;Madelyn Goedland;Micah J Dombroe;Krishanu Saha - Nature communications (2020)
  8. CRISPR/Cas9 gene editing for curing sickle cell disease. - So Hyun Park;Gang Bao - Transfusion and apheresis science : official journal of the World Apheresis Association : official journal of the European Society for Haemapheresis (2021)
  9. CRISPR-Cas9 gene editing of hepatitis B virus in chronically infected humanized mice. - Daniel Stone;Kelly R Long;Michelle A Loprieno;Harshana S De Silva Feelixge;Elizabeth J Kenkel;R Matt Liley;Stephen Rapp;Pavitra Roychoudhury;Thuy Nguyen;Laurence Stensland;Rossana Colón-Thillet;Lindsay M Klouser;Nicholas D Weber;Connie Le;Jessica Wagoner;Erin A Goecker;Alvason Zhenhua Li;Karsten Eichholz;Lawrence Corey;D Lorne Tyrrell;Alexander L Greninger;Meei-Li Huang;Stephen J Polyak;Martine Aubert;John E Sagartz;Keith R Jerome - Molecular therapy. Methods & clinical development (2021)
  10. Cas9-directed immune tolerance in humans-a model to evaluate regulatory T cells in gene therapy? - Dimitrios Laurin Wagner;Lena Peter;Michael Schmueck-Henneresse - Gene therapy (2021)

... (107 更多 篇文献)


© 2025 MaltSci 麦伴科研 - 我们用人工智能技术重塑科研