Appearance
Search-and-replace genome editing without double-strand breaks or donor DNA.
文献信息
| DOI | 10.1038/s41586-019-1711-4 |
|---|---|
| PMID | 31634902 |
| 期刊 | Nature |
| 影响因子 | 48.5 |
| JCR 分区 | Q1 |
| 发表年份 | 2019 |
| 被引次数 | 2053 |
| 关键词 | 基因编辑, 精准编辑, 无双链断裂 |
| 文献类型 | Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't, Research Support, U.S. Gov't, Non-P.H.S. |
| ISSN | 0028-0836 |
| 页码 | 149-157 |
| 期号 | 576(7785) |
| 作者 | Andrew V Anzalone, Peyton B Randolph, Jessie R Davis, Alexander A Sousa, Luke W Koblan, Jonathan M Levy, Peter J Chen, Christopher Wilson, Gregory A Newby, Aditya Raguram, David R Liu |
一句话小结
本研究介绍了一种新型的基因组编辑方法“原编辑”,该方法结合了改造的Cas9内切酶和逆转录酶,能够在指定DNA位点高效、精确地插入或修改遗传信息。通过在人体细胞中成功纠正镰状细胞病和泰萨克斯病的遗传缺陷,研究表明原编辑在基因治疗中具有广泛应用潜力,能有效扩展基因组编辑的范围并减少副产品。
在麦伴科研 (maltsci.com) 搜索更多文献
摘要
大多数导致疾病的遗传变异1在高效纠正时面临挑战,并且会产生过多的副产品2-5。在这里,我们描述了一种名为“原编辑”(prime editing)的多功能且精确的基因组编辑方法,该方法利用一种催化活性受损的Cas9内切酶与工程化的逆转录酶融合,直接在指定的DNA位点写入新的遗传信息。该方法使用一种原编辑导向RNA(pegRNA),其不仅指定了目标位点,还编码了所需的编辑。我们在人体细胞中进行了超过175次的编辑,包括靶向插入、缺失,以及所有12种点突变,而无需双链断裂或供体DNA模板。我们在人体细胞中使用原编辑有效地纠正了镰状细胞病(需要在HBB中进行转位)和泰萨克斯病(需要在HEXA中进行缺失)的主要遗传原因,安装了PRNP中的保护性转位,并精确地将各种标签和表位插入目标位点。四种人类细胞系和初级后有丝分裂的小鼠皮层神经元以不同效率支持原编辑。与同源重组修复相比,原编辑显示出更高或相似的效率以及更少的副产品,且与碱基编辑相比具有互补的优势和劣势,并且在已知的Cas9脱靶位点上诱导的脱靶编辑远低于Cas9核酸酶。原编辑大幅扩展了基因组编辑的范围和能力,原则上可以纠正多达89%与人类疾病相关的已知遗传变异。
英文摘要
Most genetic variants that contribute to disease1 are challenging to correct efficiently and without excess byproducts2-5. Here we describe prime editing, a versatile and precise genome editing method that directly writes new genetic information into a specified DNA site using a catalytically impaired Cas9 endonuclease fused to an engineered reverse transcriptase, programmed with a prime editing guide RNA (pegRNA) that both specifies the target site and encodes the desired edit. We performed more than 175 edits in human cells, including targeted insertions, deletions, and all 12 types of point mutation, without requiring double-strand breaks or donor DNA templates. We used prime editing in human cells to correct, efficiently and with few byproducts, the primary genetic causes of sickle cell disease (requiring a transversion in HBB) and Tay-Sachs disease (requiring a deletion in HEXA); to install a protective transversion in PRNP; and to insert various tags and epitopes precisely into target loci. Four human cell lines and primary post-mitotic mouse cortical neurons support prime editing with varying efficiencies. Prime editing shows higher or similar efficiency and fewer byproducts than homology-directed repair, has complementary strengths and weaknesses compared to base editing, and induces much lower off-target editing than Cas9 nuclease at known Cas9 off-target sites. Prime editing substantially expands the scope and capabilities of genome editing, and in principle could correct up to 89% of known genetic variants associated with human diseases.
麦伴智能科研服务
主要研究问题
- 在prime editing技术中,如何确保所选择的pegRNA具有高特异性和效率?
- 除了镰状细胞病和泰-萨克斯病,prime editing还可以应用于哪些其他遗传疾病的治疗?
- 与传统的基因编辑方法相比,prime editing在降低脱靶效应方面有哪些具体优势?
- 在不同的人类细胞系和小鼠神经元中,prime editing的效率差异如何影响其临床应用?
- 未来的基因编辑技术是否有可能结合prime editing的优点,以进一步提高编辑效率和精确度?
核心洞察
研究背景和目的
近年来,基因组编辑技术迅速发展,但对于许多与疾病相关的遗传变异的高效纠正仍然具有挑战性。传统的CRISPR-Cas9技术虽然广泛应用,但其引发的双链断裂(DSB)常导致不必要的副产品和低效的修复。为了解决这些问题,研究人员开发了一种新的基因组编辑方法——“原位编辑”(prime editing),旨在实现精确的基因修饰而不依赖于DSB或外源DNA模板。
主要方法/材料/实验设计
原位编辑的核心在于利用一种融合了逆转录酶的Cas9变体(即“prime editor”),配合特定的引导RNA(pegRNA),该RNA不仅指定目标位点,还编码所需的编辑信息。原位编辑的基本流程如下:
- Prime Editor Complex Formation: Prime editor由催化失活的Cas9和逆转录酶组成,与pegRNA结合形成复合体。
- Target DNA Binding: 该复合体识别并结合到目标DNA序列。
- DNA Nicking: Cas9变体在目标DNA上产生单链切口,暴露出3'羟基。
- Reverse Transcription: 逆转录酶利用pegRNA上的模板信息进行逆转录,将所需的编辑信息转录到目标DNA上。
- Flap Resolution: 生成的DNA片段通过细胞的修复机制整合入基因组中,完成编辑。
关键结果和发现
研究表明,原位编辑能够在多种人类细胞中有效进行基因编辑,包括插入、缺失和所有12种点突变。具体结果如下:
- 在HEK293T细胞中,原位编辑的效率可达到20%-50%,且引发的副产品显著低于传统的CRISPR-Cas9方法。
- 原位编辑能够有效纠正镰刀型细胞贫血和泰-萨克斯病的致病突变,表现出较高的特异性和效率。
- 在四种人类细胞系和小鼠神经元中均表现出良好的编辑能力,显示出其广泛的应用潜力。
主要结论/意义/创新性
原位编辑技术显著提高了基因组编辑的精确性和效率,能够在不产生双链断裂或依赖外源DNA模板的情况下,进行多种类型的基因修改。这一方法的成功实施可能为遗传疾病的治疗提供新的解决方案,并扩展了基因组编辑的应用范围。
研究局限性和未来方向
尽管原位编辑技术展现出强大的潜力,但仍存在一些局限性,包括:
- 目前的编辑效率在不同细胞类型间存在差异,且在某些细胞类型中仍需进一步优化。
- 需要更全面的研究以评估潜在的脱靶效应及其对细胞功能的长期影响。
未来的研究方向应集中在提高编辑效率、优化pegRNA设计、以及在更广泛的生物体中验证其应用潜力。同时,探索与其他基因编辑技术的结合使用,可能会进一步增强其临床应用的前景。
参考文献
- In vitro enzymology of Cas9. - Carolin Anders;Martin Jinek - Methods in enzymology (2014)
- High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. - Benjamin P Kleinstiver;Vikram Pattanayak;Michelle S Prew;Shengdar Q Tsai;Nhu T Nguyen;Zongli Zheng;J Keith Joung - Nature (2016)
- Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. - Alexis C Komor;Yongjoo B Kim;Michael S Packer;John A Zuris;David R Liu - Nature (2016)
- p53 inhibits CRISPR-Cas9 engineering in human pluripotent stem cells. - Robert J Ihry;Kathleen A Worringer;Max R Salick;Elizabeth Frias;Daniel Ho;Kraig Theriault;Sravya Kommineni;Julie Chen;Marie Sondey;Chaoyang Ye;Ranjit Randhawa;Tripti Kulkarni;Zinger Yang;Gregory McAllister;Carsten Russ;John Reece-Hoyes;William Forrester;Gregory R Hoffman;Ricardo Dolmetsch;Ajamete Kaykas - Nature medicine (2018)
- Reprogramming eukaryotic translation with ligand-responsive synthetic RNA switches. - Andrew V Anzalone;Annie J Lin;Sakellarios Zairis;Raul Rabadan;Virginia W Cornish - Nature methods (2016)
- ClinVar: public archive of interpretations of clinically relevant variants. - Melissa J Landrum;Jennifer M Lee;Mark Benson;Garth Brown;Chen Chao;Shanmuga Chitipiralla;Baoshan Gu;Jennifer Hart;Douglas Hoffman;Jeffrey Hoover;Wonhee Jang;Kenneth Katz;Michael Ovetsky;George Riley;Amanjeev Sethi;Ray Tully;Ricardo Villamarin-Salomon;Wendy Rubinstein;Donna R Maglott - Nucleic acids research (2016)
- limma powers differential expression analyses for RNA-sequencing and microarray studies. - Matthew E Ritchie;Belinda Phipson;Di Wu;Yifang Hu;Charity W Law;Wei Shi;Gordon K Smyth - Nucleic acids research (2015)
- Expression of a site-specific endonuclease stimulates homologous recombination in mammalian cells. - P Rouet;F Smih;M Jasin - Proceedings of the National Academy of Sciences of the United States of America (1994)
- Human synapsin 1 gene promoter confers highly neuron-specific long-term transgene expression from an adenoviral vector in the adult rat brain depending on the transduced area. - S Kügler;E Kilic;M Bähr - Gene therapy (2003)
- Continuous evolution of base editors with expanded target compatibility and improved activity. - B W Thuronyi;Luke W Koblan;Jonathan M Levy;Wei-Hsi Yeh;Christine Zheng;Gregory A Newby;Christopher Wilson;Mantu Bhaumik;Olga Shubina-Oleinik;Jeffrey R Holt;David R Liu - Nature biotechnology (2019)
引用本文的文献
- Super-precise new CRISPR tool could tackle a plethora of genetic diseases. - Heidi Ledford - Nature (2019)
- Got mutation? 'Base editors' fix genomes one nucleotide at a time. - Sandeep Ravindran - Nature (2019)
- A heterodimer of evolved designer-recombinases precisely excises a human genomic DNA locus. - Felix Lansing;Maciej Paszkowski-Rogacz;Lukas Theo Schmitt;Paul Martin Schneider;Teresa Rojo Romanos;Jan Sonntag;Frank Buchholz - Nucleic acids research (2020)
- The Scope for Thalassemia Gene Therapy by Disruption of Aberrant Regulatory Elements. - Petros Patsali;Claudio Mussolino;Petros Ladas;Argyro Floga;Annita Kolnagou;Soteroula Christou;Maria Sitarou;Michael N Antoniou;Toni Cathomen;Carsten Werner Lederer;Marina Kleanthous - Journal of clinical medicine (2019)
- Advances in Sphingolipidoses: CRISPR-Cas9 Editing as an Option for Modelling and Therapy. - Renato Santos;Olga Amaral - International journal of molecular sciences (2019)
- Human germline genome editing. - Rebecca A Lea;Kathy K Niakan - Nature cell biology (2019)
- Advances in genome editing through control of DNA repair pathways. - Charles D Yeh;Christopher D Richardson;Jacob E Corn - Nature cell biology (2019)
- Interplay between MicroRNAs and Oxidative Stress in Neurodegenerative Diseases. - Julia Konovalova;Dmytro Gerasymchuk;Ilmari Parkkinen;Piotr Chmielarz;Andrii Domanskyi - International journal of molecular sciences (2019)
- Evolutionary Dynamics of Structural Variation at a Key Locus for Color Pattern Diversification in Cichlid Fishes. - Claudius F Kratochwil;Yipeng Liang;Sabine Urban;Julián Torres-Dowdall;Axel Meyer - Genome biology and evolution (2019)
- SNP-CRISPR: A Web Tool for SNP-Specific Genome Editing. - Chiao-Lin Chen;Jonathan Rodiger;Verena Chung;Raghuvir Viswanatha;Stephanie E Mohr;Yanhui Hu;Norbert Perrimon - G3 (Bethesda, Md.) (2020)
... (2043 更多 篇文献)
© 2025 MaltSci 麦伴科研 - 我们用人工智能技术重塑科研
