Skip to content

Organoids by design.

文献信息

DOI10.1126/science.aaw7567
PMID31171692
期刊Science (New York, N.Y.)
影响因子45.8
JCR 分区Q1
发表年份2019
被引次数170
关键词类器官, 细胞复杂性, 组织功能
文献类型Journal Article
ISSN0036-8075
页码956-959
期号364(6444)
作者Takanori Takebe, James M Wells

一句话小结

本研究探讨了如何通过工程设计的方法来控制类器官的细胞复杂性和有序组装,以实现更高功能的多层组织结构。通过对胚胎发育过程的研究,这一进展为类器官的开发提供了新的思路,推动了再生医学和疾病模型的应用。

在麦伴科研 (maltsci.com) 搜索更多文献

类器官 · 细胞复杂性 · 组织功能

摘要

类器官是由成人器官或多能干细胞衍生的多细胞结构。早期的类器官版本从简单的上皮结构到复杂的、无序的组织,具有较大的细胞多样性。当前的挑战是以受控的方式将细胞复杂性工程化到类器官中,从而实现有序的组装和组织功能的获得。这些努力依赖于对胚胎发育过程中器官组装的研究,并导致了具有多层组织复杂性和更高功能的类器官的发展。我们讨论了如何通过基于工程的叙事设计来控制模式、组装、形态发生、增长和功能,从而设计下一代类器官。

英文摘要

Organoids are multicellular structures that can be derived from adult organs or pluripotent stem cells. Early versions of organoids range from simple epithelial structures to complex, disorganized tissues with large cellular diversity. The current challenge is to engineer cellular complexity into organoids in a controlled manner that results in organized assembly and acquisition of tissue function. These efforts have relied on studies of organ assembly during embryonic development and have resulted in the development of organoids with multilayer tissue complexity and higher-order functions. We discuss how the next generation of organoids can be designed by means of an engineering-based narrative design to control patterning, assembly, morphogenesis, growth, and function.

麦伴智能科研服务

智能阅读回答你对文献的任何问题,帮助理解文献中的复杂图表和公式
定位观点定位某个观点在文献中的蛛丝马迹
加入知识库完成数据提取,报告撰写等更多高级知识挖掘功能

主要研究问题

  1. 如何利用工程设计方法来优化类器官的细胞复杂性和组织功能?
  2. 在类器官的设计过程中,如何确保细胞层次结构的有序组装?
  3. 现有的类器官技术在再生医学中的应用前景如何,尤其是在个性化治疗方面?
  4. 未来类器官的开发中,哪些新的生物材料可能会被引入以改善其生长和功能?
  5. 在类器官研究中,如何通过模拟胚胎发育过程来指导类器官的形态发生和功能获得?

核心洞察

研究背景和目的

器官类器(Organoids)是由成人器官或多能干细胞衍生的多细胞结构。它们的复杂性从简单的上皮结构到复杂的、组织不规则的组织多样性不等。当前的挑战在于如何以可控的方式构建器官类器的细胞复杂性,以实现有序的组装和组织功能的获取。本文旨在探讨如何通过工程化设计理念来控制器官类器的模式、组装、形态发生、增长和功能。

主要方法/材料/实验设计

本文提出了一种名为“叙事工程”(narrative engineering)的新方法,结合生物学和工程学的原则,推动器官类器的有序发展。研究主要包括以下几个方面:

  1. 器官发生原理:借鉴器官发生过程,分为三个阶段:

    • 胚层形成(外胚层、中胚层、内胚层)
    • 胚层的区域性划分
    • 三维器官原基的形态发生
  2. 自组装与定向分化:通过控制信号通路,指导多能干细胞(PSCs)的分化,形成特定的器官类器类型。

  3. 细胞类型的引入:在器官类器的形成过程中,加入关键的细胞类型(如血管、神经、免疫细胞等),以提高器官的复杂性和功能。

  4. 环境控制:通过生物和合成环境的调节,模拟体内复杂的器官发生机制,促进器官类器的生长和成熟。

以下是研究的技术路线图(Mermaid代码):

Mermaid diagram

关键结果和发现

  1. 细胞复杂性:通过结合多种细胞类型,器官类器的复杂性得以显著提高,展示出功能性(如肝脏、肠道等器官的功能)。
  2. 功能性成熟:延长培养时间可改善器官类器的成熟度,特别是在无其他干预的情况下。
  3. 环境调节:生物和合成环境的适当调节能够促进器官类器的成熟和功能增强。

主要结论/意义/创新性

本文强调,通过叙事工程的理念,结合生物学与工程学的设计原则,可以构建既简单又高度定义的器官类器,或是高度复杂和功能完善的器官类器。这种方法为研究复杂的器官发生过程提供了新的平台,可能对疾病模型和再生医学具有重要的应用前景。

研究局限性和未来方向

  1. 局限性:当前的器官类器仍存在功能不完全、复杂性不足的问题,特别是在模拟真实器官的生理环境方面。
  2. 未来方向:未来的研究应关注如何进一步提高器官类器的成熟度、功能性及其在临床应用中的可靠性,包括通过先进的工程技术(如3D打印、微流体技术等)来改善器官类器的结构和功能。

参考文献

  1. Overview of Lung Development in the Newborn Human. - David Warburton - Neonatology (2017)
  2. Apoptotic force and tissue dynamics during Drosophila embryogenesis. - Yusuke Toyama;Xomalin G Peralta;Adrienne R Wells;Daniel P Kiehart;Glenn S Edwards - Science (New York, N.Y.) (2008)
  3. Fused cerebral organoids model interactions between brain regions. - Joshua A Bagley;Daniel Reumann;Shan Bian;Julie Lévi-Strauss;Juergen A Knoblich - Nature methods (2017)
  4. Microglia Increase Inflammatory Responses in iPSC-Derived Human BrainSpheres. - Celina Monteiro Abreu;Lucio Gama;Susanne Krasemann;Megan Chesnut;Shelly Odwin-Dacosta;Helena T Hogberg;Thomas Hartung;David Pamies - Frontiers in microbiology (2018)
  5. Tissue engineering. - R Langer;J P Vacanti - Science (New York, N.Y.) (1993)
  6. Growing self-organizing mini-guts from a single intestinal stem cell: mechanism and applications. - Toshiro Sato;Hans Clevers - Science (New York, N.Y.) (2013)
  7. Microglia innately develop within cerebral organoids. - Paul R Ormel;Renata Vieira de Sá;Emma J van Bodegraven;Henk Karst;Oliver Harschnitz;Marjolein A M Sneeboer;Lill Eva Johansen;Roland E van Dijk;Nicky Scheefhals;Amber Berdenis van Berlekom;Eduardo Ribes Martínez;Sandra Kling;Harold D MacGillavry;Leonard H van den Berg;René S Kahn;Elly M Hol;Lot D de Witte;R Jeroen Pasterkamp - Nature communications (2018)
  8. Molecular control of macroscopic forces drives formation of the vertebrate hindgut. - Nandan L Nerurkar;ChangHee Lee;L Mahadevan;Clifford J Tabin - Nature (2019)
  9. Blueprint for an intestinal villus: Species-specific assembly required. - Katherine D Walton;Darcy Mishkind;Misty R Riddle;Clifford J Tabin;Deborah L Gumucio - Wiley interdisciplinary reviews. Developmental biology (2018)
  10. Modelling cancer in microfluidic human organs-on-chips. - Alexandra Sontheimer-Phelps;Bryan A Hassell;Donald E Ingber - Nature reviews. Cancer (2019)

引用本文的文献

  1. Pluripotent stem cell-derived organogenesis in the rat model system. - Masumi Hirabayashi;Teppei Goto;Shinichi Hochi - Transgenic research (2019)
  2. Building Complex Life Through Self-Organization. - Mireille M J P E Sthijns;Vanessa L S LaPointe;Clemens A van Blitterswijk - Tissue engineering. Part A (2019)
  3. Organs-on-Chips in Clinical Pharmacology: Putting the Patient Into the Center of Treatment Selection and Drug Development. - Richard W Peck;Christopher D Hinojosa;Geraldine A Hamilton - Clinical pharmacology and therapeutics (2020)
  4. Organoids - New Models for Host-Helminth Interactions. - María A Duque-Correa;Rick M Maizels;Richard K Grencis;Matthew Berriman - Trends in parasitology (2020)
  5. De Novo-Designed Near-Infrared Nanoaggregates for Super-Resolution Monitoring of Lysosomes in Cells, in Whole Organoids, and in Vivo. - Hongbao Fang;Shankun Yao;Qixin Chen;Chunyan Liu;Yuqi Cai;Shanshan Geng;Yang Bai;Zhiqi Tian;Amanda L Zacharias;Takanori Takebe;Yuncong Chen;Zijian Guo;Weijiang He;Jiajie Diao - ACS nano (2019)
  6. Novel three-dimensional cultures provide insights into thyroid cancer behavior. - Mason A Lee;Kensey N Bergdorf;Courtney J Phifer;Caroline Y Jones;Sonia Y Byon;Leah M Sawyer;Joshua A Bauer;Vivian L Weiss - Endocrine-related cancer (2020)
  7. Engineered 3D Polymer and Hydrogel Microenvironments for Cell Culture Applications. - Daniel Fan;Urs Staufer;Angelo Accardo - Bioengineering (Basel, Switzerland) (2019)
  8. Liver Buds and Liver Organoids: New Tools for Liver Development, Disease and Medical Application. - Fanhong Zeng;Yue Zhang;Xu Han;Jun Weng;Yi Gao - Stem cell reviews and reports (2019)
  9. Bioengineered microenvironment to culture early embryos. - Zhen Gu;Jia Guo;Hongmei Wang;Yongqiang Wen;Qi Gu - Cell proliferation (2020)
  10. Engineering Tissue Fabrication With Machine Intelligence: Generating a Blueprint for Regeneration. - Joohyun Kim;Jane A McKee;Jake J Fontenot;Jangwook P Jung - Frontiers in bioengineering and biotechnology (2019)

... (160 更多 篇文献)


© 2025 MaltSci 麦伴科研 - 我们用人工智能技术重塑科研