Skip to content

Engineering Organoid Vascularization.

文献信息

DOI10.3389/fbioe.2019.00039
PMID30941347
期刊Frontiers in bioengineering and biotechnology
影响因子4.8
JCR 分区Q1
发表年份2019
被引次数160
关键词生物工程, 生物制造, 生物材料, 类器官, 血管化
文献类型Journal Article, Review
ISSN2296-4185
页码39
期号7()
作者Sergei Grebenyuk, Adrian Ranga

一句话小结

本研究回顾了在体外生成血管的最新技术进展,强调了血管网络在类器官发育中的重要性,以满足药物发现和再生医学的需求。通过整合这些技术和理论见解,旨在推动下一代类器官的发展,克服其在功能复杂性和规模上的限制。

在麦伴科研 (maltsci.com) 搜索更多文献

生物工程 · 生物制造 · 生物材料 · 类器官 · 血管化

摘要

生物仿生人类组织类比物的不断发展一直是生物医学领域两个重要应用的长期目标:药物发现和再生医学。在寻求理解新开发的药物疗法的安全性和有效性,以及用于严重受伤且无法再生的组织和器官的替代组织时,仍然存在着在功能复杂性和规模上生成组织的巨大未满足需求。在过去十年中,类器官的出现证明了细胞在给予最小诱导因子的情况下有能力重组为复杂的组织特异性结构。然而,实现真正类体内功能的主要限制在于缺乏结构化的组织和合理的组织大小。在体内,发育中的组织与复杂的血管网络相互渗透和互动,这不仅允许氧气、营养物质和废物的交换,还提供了诱导生化交换和生长的结构模板。相反,在体外,这一类器官发育的方面在很大程度上仍然缺失,这表明这些可能是大规模和更具可重复性的组织构建所需的关键信号。在此,我们回顾了在体外生成血管的最新技术进展,并试图提供一个框架,以理解如何利用这些技术以及理论和发展启发的见解,来增强下一代类器官的发展。

英文摘要

The development of increasingly biomimetic human tissue analogs has been a long-standing goal in two important biomedical applications: drug discovery and regenerative medicine. In seeking to understand the safety and effectiveness of newly developed pharmacological therapies and replacement tissues for severely injured non-regenerating tissues and organs, there remains a tremendous unmet need in generating tissues with both functional complexity and scale. Over the last decade, the advent of organoids has demonstrated that cells have the ability to reorganize into complex tissue-specific structures given minimal inductive factors. However, a major limitation in achieving truly in vivo-like functionality has been the lack of structured organization and reasonable tissue size. In vivo, developing tissues are interpenetrated by and interact with a complex network of vasculature which allows not only oxygen, nutrient and waste exchange, but also provide for inductive biochemical exchange and a structural template for growth. Conversely, in vitro, this aspect of organoid development has remained largely missing, suggesting that these may be the critical cues required for large-scale and more reproducible tissue organization. Here, we review recent technical progress in generating in vitro vasculature, and seek to provide a framework for understanding how such technologies, together with theoretical and developmentally inspired insights, can be harnessed to enhance next generation organoid development.

麦伴智能科研服务

智能阅读回答你对文献的任何问题,帮助理解文献中的复杂图表和公式
定位观点定位某个观点在文献中的蛛丝马迹
加入知识库完成数据提取,报告撰写等更多高级知识挖掘功能

主要研究问题

  1. 在现有的类器官血管化技术中,哪些具体的生物材料或细胞类型被认为是最有效的?
  2. 如何评估生成的类器官血管化的功能性与体内组织的相似性?
  3. 在促进类器官血管化的过程中,是否有特定的信号通路或分子机制需要特别关注?
  4. 未来的研究方向中,如何将计算模型与实验方法结合以优化类器官的血管化过程?
  5. 在临床应用中,类器官血管化技术面临哪些主要挑战和伦理问题?

核心洞察

研究背景和目的

随着生物医学领域对功能复杂的人体组织模拟物的需求增加,组织工程和再生医学成为重要研究方向。近年来,类器官的出现展示了细胞在最小诱导因子的作用下能够自我组织成复杂的组织特异性结构。然而,类器官在体外缺乏有效的血管化,限制了其在药物发现和再生医学中的应用。因此,本研究旨在回顾和探讨如何通过工程技术促进类器官的血管化,以实现更高的功能复杂性和规模。

主要方法/材料/实验设计

本研究综合了多种工程技术,旨在生成具有血管化的类器官。主要方法包括:

  1. 生物打印:使用层层沉积的生物墨水,形成包含细胞的血管结构。
  2. 数字微镜(DMD)光刻:通过选择性光聚合形成复杂的3D结构。
  3. 双光子立体光刻:实现微米级的精确结构生成。
  4. 牺牲网络法:在细胞载体中嵌入可溶解的支架,形成血管通道。
  5. 激光消融:在细胞载体中直接形成微通道。

以下是主要技术路线的流程图:

Mermaid diagram

关键结果和发现

  1. 生物打印:能够生成大规模的预血管化组织,细胞活性高达90%以上。
  2. DMD光刻:实现了复杂的3D结构,支持内皮细胞形成管腔结构。
  3. 双光子立体光刻:提供了微米级的精确度,适合于复杂微结构的制造。
  4. 牺牲网络法:成功创建了可灌注的血管网络,并在动物模型中实现了血管吻合。
  5. 激光消融:可以在细胞支架中生成微通道,促进细胞的生长和迁移。

主要结论/意义/创新性

本研究强调了血管化在类器官工程中的重要性,提出了多种技术的结合使用能够有效克服类器官血管化的瓶颈。这些技术的进步不仅推动了类器官在药物筛选和再生医学中的应用,还为个性化医疗提供了新的可能性。

研究局限性和未来方向

尽管本研究展示了多种技术的潜力,但仍存在以下局限性:

  • 血管结构的动态响应能力不足:当前的血管化结构无法根据环境变化进行动态调整。
  • 细胞相互作用的复杂性:在类器官与血管系统的相互作用中,尚未完全理解细胞信号传导的机制。

未来的研究方向应集中在以下几个方面:

  1. 优化血管化结构设计:探索在特定发育阶段设计合适的血管结构。
  2. 动态血管重塑机制:研究如何实现血管网络的动态调节,以适应类器官的生长需求。
  3. 多细胞共培养系统:开发更复杂的细胞共培养模型,以模拟更真实的组织微环境。

参考文献

  1. Designing materials for biology and medicine. - Robert Langer;David A Tirrell - Nature (2004)
  2. Mathematical model of oxygen distribution in engineered cardiac tissue with parallel channel array perfused with culture medium containing oxygen carriers. - Milica Radisic;William Deen;Robert Langer;Gordana Vunjak-Novakovic - American journal of physiology. Heart and circulatory physiology (2005)
  3. A design principle for vascular beds: the effects of complex blood rheology. - Tomás Alarcón;Helen M Byrne;Philip K Maini - Microvascular research (2005)
  4. Matrigel: basement membrane matrix with biological activity. - Hynda K Kleinman;George R Martin - Seminars in cancer biology (2005)
  5. Capturing complex 3D tissue physiology in vitro. - Linda G Griffith;Melody A Swartz - Nature reviews. Molecular cell biology (2006)
  6. Biomimetic design of microfluidic manifolds based on a generalised Murray's law. - David R Emerson;Krzysztof Cieślicki;Xiaojun Gu;Robert W Barber - Lab on a chip (2006)
  7. Potential of fibroblasts to regulate the formation of three-dimensional vessel-like structures from endothelial cells in vitro. - Leoni A Kunz-Schughart;Josef A Schroeder;Marit Wondrak;Frank van Rey;Karla Lehle;Ferdinand Hofstaedter;Denys N Wheatley - American journal of physiology. Cell physiology (2006)
  8. Fabrication of microfluidic hydrogels using molded gelatin as a sacrificial element. - Andrew P Golden;Joe Tien - Lab on a chip (2007)
  9. Delivery of human fibroblast cells by piezoelectric drop-on-demand inkjet printing. - Rachel E Saunders;Julie E Gough;Brian Derby - Biomaterials (2008)
  10. The role of actively released fibrin-conjugated VEGF for VEGF receptor 2 gene activation and the enhancement of angiogenesis. - Martin Ehrbar;Steffen M Zeisberger;George P Raeber;Jeffrey A Hubbell;Christian Schnell;Andreas H Zisch - Biomaterials (2008)

引用本文的文献

  1. An Air Bubble-Isolating Rotating Wall Vessel Bioreactor for Improved Spheroid/Organoid Formation. - Michael A Phelan;Anthony L Gianforcaro;Jonathan A Gerstenhaber;Peter I Lelkes - Tissue engineering. Part C, Methods (2019)
  2. In vitro and in silico Models to Study Mosquito-Borne Flavivirus Neuropathogenesis, Prevention, and Treatment. - Megan Chesnut;Laura S Muñoz;Georgina Harris;Dana Freeman;Lucio Gama;Carlos A Pardo;David Pamies - Frontiers in cellular and infection microbiology (2019)
  3. Past, Present, and Future of Brain Organoid Technology. - Bonsang Koo;Baekgyu Choi;Hoewon Park;Ki-Jun Yoon - Molecules and cells (2019)
  4. Cerebral Organoid Models for Neurotropic Viruses. - Jenna Antonucci;Lee Gehrke - ACS infectious diseases (2019)
  5. Reverse engineering human brain evolution using organoid models. - Mohammed A Mostajo-Radji;Matthew T Schmitz;Sebastian Torres Montoya;Alex A Pollen - Brain research (2020)
  6. Uncovering cell biology in the third dimension. - Gabriella L Robertson;Alejandra I Romero-Morales;Ethan S Lippmann;Vivian Gama - Molecular biology of the cell (2020)
  7. Integrated On-Chip 3D Vascular Network Culture under Hypoxia. - Miguel Ángel Olmedo-Suárez;Tomohiro Sekiguchi;Atsushi Takano;Maria Del Pilar Cañizares-Macías;Nobuyuki Futai - Micromachines (2020)
  8. The endothelium, a key actor in organ development and hPSC-derived organoid vascularization. - Alejandra Vargas-Valderrama;Antonietta Messina;Maria Teresa Mitjavila-Garcia;Hind Guenou - Journal of biomedical science (2020)
  9. Links between Nutrition, Infectious Diseases, and Microbiota: Emerging Technologies and Opportunities for Human-Focused Research. - Manuela Cassotta;Tamara Yuliett Forbes-Hernández;Ruben Calderón Iglesias;Roberto Ruiz;Maria Elexpuru Zabaleta;Francesca Giampieri;Maurizio Battino - Nutrients (2020)
  10. Exploiting CRISPR Cas9 in Three-Dimensional Stem Cell Cultures to Model Disease. - Sneha Gopal;André Lopes Rodrigues;Jonathan S Dordick - Frontiers in bioengineering and biotechnology (2020)

... (150 更多 篇文献)


© 2025 MaltSci 麦伴科研 - 我们用人工智能技术重塑科研