Skip to content

Efficiency of CAR-T Therapy for Treatment of Solid Tumor in Clinical Trials: A Meta-Analysis.

文献信息

DOI10.1155/2019/3425291
PMID30886654
期刊Disease markers
JCR 分区Q2
发表年份2019
被引次数66
关键词CAR-T细胞治疗, 实体肿瘤, meta分析, 治疗效果, 神经母细胞瘤
文献类型Journal Article, Meta-Analysis
ISSN0278-0240
页码3425291
期号2019()
作者Bin Hou, Yao Tang, Wenhan Li, Qingnuo Zeng, Dongmin Chang

一句话小结

本研究通过荟萃分析22项研究,探讨了嵌合抗原受体T细胞(CAR-T)疗法在262名实体肿瘤患者中的反应率,结果显示总体反应率仅为9%,其中神经母细胞瘤效果最佳,而胃肠道恶性肿瘤几乎无效;尽管结果不理想,研究者仍对CAR-T疗法的未来前景抱有希望,期待通过结构修改提升疗效。

在麦伴科研 (maltsci.com) 搜索更多文献

CAR-T细胞治疗 · 实体肿瘤 · meta分析 · 治疗效果 · 神经母细胞瘤

摘要

背景
嵌合抗原受体T细胞(CAR-T)疗法在血液肿瘤中取得了前所未有的成功,但其在实体肿瘤治疗中的作用仍不明确。

方法
两名独立评审者对截至2018年6月1日的电子数据库进行了全面检索。我们纳入了关注CAR-T细胞疗法与实体肿瘤患者反应率和生存时间关联的研究。

结果
我们的荟萃分析纳入了22项研究,共262名患者。CAR-T细胞疗法的总体合并反应率为9%(95%置信区间(CI):4-16%)。亚组分析显示,CAR-T疗法在神经母细胞瘤中发挥了最佳治疗效果,而在胃肠道恶性肿瘤中几乎没有效果。此外,不同的治疗策略(T细胞输注前的淋巴清除、转染方法、细胞培养时长、CAR-T细胞的持久性、转染效率、总细胞剂量和IL-2的给药)对治疗效果没有显著影响。只有T细胞培养时长与更好的临床预后相关。

结论
尽管CAR-T细胞疗法在实体肿瘤中的反应并不令人满意,但研究人员仍对其未来的疗效持乐观态度,并期待通过更多结构修改来改善其效果。

英文摘要

BACKGROUND Chimeric antigen receptor T (CAR-T) cell therapy has achieved unprecedented success among hematologic tumors, but its role in treating solid tumors is still unclear.

METHODS A comprehensive search of electronic databases up to June 1, 2018, was carried out by two independent reviewers. We included studies which focused on the association between CAR-T cell therapy and patient response rate and survival time in solid tumors.

RESULTS 22 studies with 262 patients were included in our meta-analysis. The overall pooled response rate of CAR-T cell therapy was 9% (95% confidence interval (CI): 4-16%). Subgroup analysis (analyses) demonstrated that CAR-T therapy could perform its best therapeutic effect on neuroblastoma, while barely works among gastrointestinal malignancies. Moreover, the treatment efficacy was not significantly impacted by different treatment strategies (lymphodepletion before T cell infusion, transfection method, cell culture duration, persistence of CAR-T cells, transfection efficacy, total cell dose, and administration of IL-2). Only T cell culture duration was associated with better clinical prognosis.

CONCLUSIONS Although CAR-T cell therapy did not have satisfactory responses in solid tumors, researchers were still holding an optimistic attitude towards its future efficacy with more modifications of its structure.

麦伴智能科研服务

智能阅读回答你对文献的任何问题,帮助理解文献中的复杂图表和公式
定位观点定位某个观点在文献中的蛛丝马迹
加入知识库完成数据提取,报告撰写等更多高级知识挖掘功能

主要研究问题

  1. 在对固体肿瘤的CAR-T疗法中,除了神经母细胞瘤,是否有其他类型的肿瘤显示出较好的治疗反应?
  2. 针对不同的治疗策略,CAR-T疗法在固体肿瘤中的潜在改进方向有哪些?
  3. 在临床试验中,如何评估CAR-T细胞疗法对患者生存时间的影响?
  4. 目前对CAR-T细胞疗法在固体肿瘤中的应用存在哪些主要挑战,未来的研究方向是什么?
  5. 在CAR-T细胞的转染方法和细胞培养持续时间方面,如何优化以提高固体肿瘤患者的治疗效果?

核心洞察

研究背景和目的

嵌合抗原受体T细胞(CAR-T)疗法在血液肿瘤治疗中取得了显著成功,但其在固体肿瘤中的应用效果尚不明确。本研究旨在通过系统性回顾和荟萃分析,评估CAR-T疗法在固体肿瘤中的治疗效果,探讨影响疗效的因素。

主要方法/材料/实验设计

本研究采用了荟萃分析方法,包含以下步骤:

Mermaid diagram
  1. 数据来源:通过PubMed、Embase和ASCO等数据库进行文献检索,关键词包括“CAR-T疗法”、“嵌合抗原受体T细胞”、“固体肿瘤”和“预后”。
  2. 纳入标准:纳入关注CAR-T疗法与患者反应率及生存时间的临床研究,排除血液肿瘤、动物实验和非英文文献。
  3. 数据提取:由两名独立评审员提取患者性别、年龄、肿瘤类型、基因转导方法、T细胞培养时间等数据,主要终点为治疗反应率。
  4. 统计分析:使用R软件进行统计分析,采用随机效应模型计算整体反应率,并进行亚组分析。

关键结果和发现

  1. 纳入研究:共纳入22项研究,涉及262名患者。
  2. 整体反应率:CAR-T疗法在固体肿瘤中的整体反应率为9%(95% CI:4%-16%)。
  3. 亚组分析
    • 神经母细胞瘤反应率最高,达到33%。
    • 胃肠道恶性肿瘤的治疗效果较差。
    • T细胞培养时间与临床预后相关,培养时间超过14天的患者生存期更长(723天 vs 451天)。

主要结论/意义/创新性

尽管CAR-T疗法在固体肿瘤中的反应率不理想,但研究结果表明其在某些类型肿瘤(如神经母细胞瘤)中仍有潜在的治疗效果。未来通过对CAR-T细胞结构的改进及与其他治疗手段的结合,可能提高其在固体肿瘤中的疗效。

研究局限性和未来方向

  1. 局限性

    • 目前缺乏大规模的临床数据,主要数据集中在反应率和短期生存率上。
    • 不同研究对不良事件的评估标准不一,导致结果不准确。
  2. 未来方向

    • 需要进行更大规模的临床试验以验证CAR-T疗法在固体肿瘤中的长期效果和安全性。
    • 探索与免疫检查点抑制剂联合使用的可能性,以克服肿瘤微环境对T细胞功能的抑制。

通过这些努力,CAR-T疗法有望在固体肿瘤的治疗中取得更好的临床效果。

参考文献

  1. Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. - Haidong Dong;Scott E Strome;Diva R Salomao;Hideto Tamura;Fumiya Hirano;Dallas B Flies;Patrick C Roche;Jun Lu;Gefeng Zhu;Koji Tamada;Vanda A Lennon;Esteban Celis;Lieping Chen - Nature medicine (2002)
  2. Redirecting migration of T cells to chemokine secreted from tumors by genetic modification with CXCR2. - Michael H Kershaw;Gang Wang;Jennifer A Westwood;Russell K Pachynski;H Lee Tiffany;Francesco M Marincola;Ena Wang;Howard A Young;Philip M Murphy;Patrick Hwu - Human gene therapy (2002)
  3. Adoptive transfer of chimeric antigen receptor re-directed cytolytic T lymphocyte clones in patients with neuroblastoma. - Julie R Park;David L Digiusto;Marilyn Slovak;Christine Wright;Araceli Naranjo;Jamie Wagner;Hunsar B Meechoovet;Cherrilyn Bautista;Wen-Chung Chang;Julie R Ostberg;Michael C Jensen - Molecular therapy : the journal of the American Society of Gene Therapy (2007)
  4. Gene therapy with human and mouse T-cell receptors mediates cancer regression and targets normal tissues expressing cognate antigen. - Laura A Johnson;Richard A Morgan;Mark E Dudley;Lydie Cassard;James C Yang;Marybeth S Hughes;Udai S Kammula;Richard E Royal;Richard M Sherry;John R Wunderlich;Chyi-Chia R Lee;Nicholas P Restifo;Susan L Schwarz;Alexandria P Cogdill;Rachel J Bishop;Hung Kim;Carmen C Brewer;Susan F Rudy;Carter VanWaes;Jeremy L Davis;Aarti Mathur;Robert T Ripley;Debbie A Nathan;Carolyn M Laurencot;Steven A Rosenberg - Blood (2009)
  5. Myeloid-derived suppressor cells down-regulate L-selectin expression on CD4+ and CD8+ T cells. - Erica M Hanson;Virginia K Clements;Pratima Sinha;Dan Ilkovitch;Suzanne Ostrand-Rosenberg - Journal of immunology (Baltimore, Md. : 1950) (2009)
  6. Enhanced tumor trafficking of GD2 chimeric antigen receptor T cells by expression of the chemokine receptor CCR2b. - John A Craddock;An Lu;Adham Bear;Martin Pule;Malcolm K Brenner;Cliona M Rooney;Aaron E Foster - Journal of immunotherapy (Hagerstown, Md. : 1997) (2010)
  7. Expression of a functional CCR2 receptor enhances tumor localization and tumor eradication by retargeted human T cells expressing a mesothelin-specific chimeric antibody receptor. - Edmund K Moon;Carmine Carpenito;Jing Sun;Liang-Chuan S Wang;Veena Kapoor;Jarrod Predina;Daniel J Powell;James L Riley;Carl H June;Steven M Albelda - Clinical cancer research : an official journal of the American Association for Cancer Research (2011)
  8. Antitumor activity and long-term fate of chimeric antigen receptor-positive T cells in patients with neuroblastoma. - Chrystal U Louis;Barbara Savoldo;Gianpietro Dotti;Martin Pule;Eric Yvon;G Doug Myers;Claudia Rossig;Heidi V Russell;Oumar Diouf;Enli Liu;Hao Liu;Meng-Fen Wu;Adrian P Gee;Zhuyong Mei;Cliona M Rooney;Helen E Heslop;Malcolm K Brenner - Blood (2011)
  9. Preclinical in vivo modeling of cytokine release syndrome induced by ErbB-retargeted human T cells: identifying a window of therapeutic opportunity? - Sjoukje J C van der Stegen;David M Davies;Scott Wilkie;Julie Foster;Jane K Sosabowski;Jerome Burnet;Lynsey M Whilding;Roseanna M Petrovic;Sadaf Ghaem-Maghami;Stephen Mather;Jean-Pierre Jeannon;Ana C Parente-Pereira;John Maher - Journal of immunology (Baltimore, Md. : 1950) (2013)
  10. Targeting CXCL12 from FAP-expressing carcinoma-associated fibroblasts synergizes with anti-PD-L1 immunotherapy in pancreatic cancer. - Christine Feig;James O Jones;Matthew Kraman;Richard J B Wells;Andrew Deonarine;Derek S Chan;Claire M Connell;Edward W Roberts;Qi Zhao;Otavia L Caballero;Sarah A Teichmann;Tobias Janowitz;Duncan I Jodrell;David A Tuveson;Douglas T Fearon - Proceedings of the National Academy of Sciences of the United States of America (2013)

引用本文的文献

  1. CAR-T with License to Kill Solid Tumors in Search of a Winning Strategy. - Benedetto Sacchetti;Andrea Botticelli;Luca Pierelli;Marianna Nuti;Maurizio Alimandi - International journal of molecular sciences (2019)
  2. Chimeric Antigen Receptor-T Cells for Targeting Solid Tumors: Current Challenges and Existing Strategies. - Lorraine Springuel;Caroline Lonez;Bertrand Alexandre;Eric Van Cutsem;Jean-Pascal H Machiels;Marc Van Den Eynde;Hans Prenen;Alain Hendlisz;Leila Shaza;Javier Carrasco;Jean-Luc Canon;Mateusz Opyrchal;Kunle Odunsi;Sylvie Rottey;David E Gilham;Anne Flament;Frédéric F Lehmann - BioDrugs : clinical immunotherapeutics, biopharmaceuticals and gene therapy (2019)
  3. Engineering T cells for immunotherapy of primary human hepatocellular carcinoma. - Leidy D Caraballo Galva;Lun Cai;Yanxia Shao;Yukai He - Journal of genetics and genomics = Yi chuan xue bao (2020)
  4. Getting CD19 Into Shape: Expression of Natively Folded "Difficult-to- Express" CD19 for Staining and Stimulation of CAR-T Cells. - Elisabeth Lobner;Anna Wachernig;Venugopal Gudipati;Patrick Mayrhofer;Benjamin Salzer;Manfred Lehner;Johannes B Huppa;Renate Kunert - Frontiers in bioengineering and biotechnology (2020)
  5. Comparison of Clinically Relevant Oncolytic Virus Platforms for Enhancing T Cell Therapy of Solid Tumors. - Victor Cervera-Carrascon;Dafne C A Quixabeira;Riikka Havunen;Joao M Santos;Emma Kutvonen;James H A Clubb;Mikko Siurala;Camilla Heiniö;Sadia Zafar;Teija Koivula;Dave Lumen;Marjo Vaha;Arturo Garcia-Horsman;Anu J Airaksinen;Suvi Sorsa;Marjukka Anttila;Veijo Hukkanen;Anna Kanerva;Akseli Hemminki - Molecular therapy oncolytics (2020)
  6. Adoptive immunotherapies in neuro-oncology: classification, recent advances, and translational challenges. - Sabino Luzzi;Alice Giotta Lucifero;Ilaria Brambilla;Mariasole Magistrali;Mario Mosconi;Salvatore Savasta;Thomas Foiadelli - Acta bio-medica : Atenei Parmensis (2020)
  7. CAR T Cell Therapy in Pancreaticobiliary Cancers: a Focused Review of Clinical Data. - Muhammad Yasir Anwar;Grant R Williams;Ravi K Paluri - Journal of gastrointestinal cancer (2021)
  8. Intravital Imaging of Adoptive T-Cell Morphology, Mobility and Trafficking Following Immune Checkpoint Inhibition in a Mouse Melanoma Model. - Doreen Lau;Fabien Garçon;Anita Chandra;Laura M Lechermann;Luigi Aloj;Edwin R Chilvers;Pippa G Corrie;Klaus Okkenhaug;Ferdia A Gallagher - Frontiers in immunology (2020)
  9. Detection of response to tumor microenvironment-targeted cellular immunotherapy using nano-radiomics. - Laxman Devkota;Zbigniew Starosolski;Charlotte H Rivas;Igor Stupin;Ananth Annapragada;Ketan B Ghaghada;Robin Parihar - Science advances (2020)
  10. Lactate Exposure Promotes Immunosuppressive Phenotypes in Innate Immune Cells. - Rapeepat Sangsuwan;Bhasirie Thuamsang;Noah Pacifici;Riley Allen;Hyunsoo Han;Svetlana Miakicheva;Jamal S Lewis - Cellular and molecular bioengineering (2020)

... (56 更多 篇文献)


© 2025 MaltSci 麦伴科研 - 我们用人工智能技术重塑科研