Appearance
RNA velocity of single cells.
文献信息
| DOI | 10.1038/s41586-018-0414-6 |
|---|---|
| PMID | 30089906 |
| 期刊 | Nature |
| 影响因子 | 48.5 |
| JCR 分区 | Q1 |
| 发表年份 | 2018 |
| 被引次数 | 1991 |
| 关键词 | RNA速度, 单细胞RNA测序, 基因表达, 发育谱系, 细胞动态 |
| 文献类型 | Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't, Research Support, U.S. Gov't, Non-P.H.S., Validation Study |
| ISSN | 0028-0836 |
| 页码 | 494-498 |
| 期号 | 560(7719) |
| 作者 | Gioele La Manno, Ruslan Soldatov, Amit Zeisel, Emelie Braun, Hannah Hochgerner, Viktor Petukhov, Katja Lidschreiber, Maria E Kastriti, Peter Lönnerberg, Alessandro Furlan, Jean Fan, Lars E Borm, Zehua Liu, David van Bruggen, Jimin Guo, Xiaoling He, Roger Barker, Erik Sundström, Gonçalo Castelo-Branco, Patrick Cramer, Igor Adameyko, Sten Linnarsson, Peter V Kharchenko |
一句话小结
本研究提出了一种通过RNA速度来估计细胞基因表达状态变化的方法,克服了单细胞RNA测序仅提供静态快照的局限性。该方法在小鼠海马和人类胚胎大脑中的应用显示了其在揭示发育谱系和细胞动态方面的重要意义。
在麦伴科研 (maltsci.com) 搜索更多文献
RNA速度 · 单细胞RNA测序 · 基因表达 · 发育谱系 · 细胞动态
摘要
RNA丰度是个体细胞状态的一个重要指标。单细胞RNA测序能够以高定量精度、灵敏度和通量揭示RNA丰度。然而,这种方法仅捕捉了某一时刻的静态快照,这对分析如胚胎发育或组织再生等时间分辨现象构成了挑战。在这里,我们展示了RNA速度——基因表达状态的时间导数——可以通过区分常见单细胞RNA测序协议中的未剪接和已剪接mRNA直接估计。RNA速度是一个高维向量,它预测个体细胞在小时级时间尺度上的未来状态。我们在神经嵴谱系中验证了其准确性,展示了其在多个已发表数据集和技术平台上的应用,揭示了发育中小鼠海马的分支谱系树,并研究了人类胚胎大脑中的转录动力学。我们预计RNA速度将极大地促进发育谱系和细胞动态的分析,特别是在人体研究中。
英文摘要
RNA abundance is a powerful indicator of the state of individual cells. Single-cell RNA sequencing can reveal RNA abundance with high quantitative accuracy, sensitivity and throughput1. However, this approach captures only a static snapshot at a point in time, posing a challenge for the analysis of time-resolved phenomena such as embryogenesis or tissue regeneration. Here we show that RNA velocity-the time derivative of the gene expression state-can be directly estimated by distinguishing between unspliced and spliced mRNAs in common single-cell RNA sequencing protocols. RNA velocity is a high-dimensional vector that predicts the future state of individual cells on a timescale of hours. We validate its accuracy in the neural crest lineage, demonstrate its use on multiple published datasets and technical platforms, reveal the branching lineage tree of the developing mouse hippocampus, and examine the kinetics of transcription in human embryonic brain. We expect RNA velocity to greatly aid the analysis of developmental lineages and cellular dynamics, particularly in humans.
麦伴智能科研服务
主要研究问题
- RNA velocity在不同类型细胞中的表现有何不同?
- 如何利用RNA velocity分析细胞发育过程中基因表达的动态变化?
- RNA velocity的计算方法有哪些潜在的改进或替代方案?
- RNA velocity如何帮助我们理解肿瘤细胞的演化过程?
- 在研究组织再生中,RNA velocity可以提供哪些新的见解?
核心洞察
研究背景和目的
RNA丰度是指示单个细胞状态的重要指标。传统的单细胞RNA测序技术只能捕捉细胞在某一时刻的静态快照,难以分析如胚胎发育或组织再生等时间分辨现象。本文提出了一种新的概念——RNA速度(RNA velocity),它通过区分未剪接和已剪接的mRNA,能够直接估计基因表达状态的时间导数,从而预测细胞在短时间内的未来状态。
主要方法/材料/实验设计
本研究采用了多种单细胞RNA测序技术,包括SMART-seq2、STRT/C1、inDrop和10x Genomics等。研究的核心在于通过分析未剪接和已剪接mRNA的相对丰度,推导出RNA速度。以下是技术路线的流程图:
关键结果和发现
- RNA速度的准确性:在神经嵴谱系中验证了RNA速度的准确性,并展示了其在多个已发布数据集和技术平台上的应用。
- 小鼠海马发育的分支谱系树:揭示了小鼠海马发育过程中的分支谱系,RNA速度能够反映出细胞分化的动态过程。
- 人类胚胎大脑的转录动力学:通过对人类胚胎大脑的分析,发现未剪接mRNA在转录动态中始终领先于已剪接mRNA,验证了RNA速度的有效性。
主要结论/意义/创新性
RNA速度提供了一种新的视角来理解细胞动态,尤其是在发育和分化过程中。它为分析发育谱系和细胞动态提供了强有力的工具,尤其是在研究人类细胞时具有重要的潜力。这一方法能够更深入地揭示细胞命运的决定机制,并为未来的单细胞研究提供了基础。
研究局限性和未来方向
- 局限性:RNA速度的估计依赖于对剪接和降解速率的准确建模,且对某些基因可能存在误差,尤其是在非稳态条件下。
- 未来方向:希望通过结合RNA速度与其他动态建模方法,进一步提升对细胞命运的预测能力。此外,开发新的算法来处理更复杂的生物过程和细胞状态将是未来研究的重要方向。
表格总结
| 部分 | 内容 |
|---|---|
| 研究背景 | RNA丰度作为细胞状态的指示,但传统方法无法捕捉动态变化。 |
| 主要方法 | 采用单细胞RNA测序,分析未剪接和已剪接mRNA以估计RNA速度。 |
| 关键结果 | 验证RNA速度的准确性,揭示小鼠海马发育的分支谱系,分析人类胚胎大脑。 |
| 主要结论 | RNA速度为细胞动态分析提供新工具,特别是在发育和分化研究中。 |
| 研究局限性 | 估计依赖于模型的准确性,可能在非稳态条件下存在误差。 |
| 未来方向 | 结合其他动态建模方法,开发新算法处理复杂生物过程。 |
参考文献
- Analysis of intronic and exonic reads in RNA-seq data characterizes transcriptional and post-transcriptional regulation. - Dimos Gaidatzis;Lukas Burger;Maria Florescu;Michael B Stadler - Nature biotechnology (2015)
- Characterization of the single-cell transcriptional landscape by highly multiplex RNA-seq. - Saiful Islam;Una Kjällquist;Annalena Moliner;Pawel Zajac;Jian-Bing Fan;Peter Lönnerberg;Sten Linnarsson - Genome research (2011)
- Smart-seq2 for sensitive full-length transcriptome profiling in single cells. - Simone Picelli;Åsa K Björklund;Omid R Faridani;Sven Sagasser;Gösta Winberg;Rickard Sandberg - Nature methods (2013)
- Stochastic mechanisms of cell fate specification that yield random or robust outcomes. - Robert J Johnston;Claude Desplan - Annual review of cell and developmental biology (2010)
- Conserved properties of dentate gyrus neurogenesis across postnatal development revealed by single-cell RNA sequencing. - Hannah Hochgerner;Amit Zeisel;Peter Lönnerberg;Sten Linnarsson - Nature neuroscience (2018)
- The glial nature of embryonic and adult neural stem cells. - Arnold Kriegstein;Arturo Alvarez-Buylla - Annual review of neuroscience (2009)
- TT-seq maps the human transient transcriptome. - Björn Schwalb;Margaux Michel;Benedikt Zacher;Katja Frühauf;Carina Demel;Achim Tresch;Julien Gagneur;Patrick Cramer - Science (New York, N.Y.) (2016)
- A single-cell survey of the small intestinal epithelium. - Adam L Haber;Moshe Biton;Noga Rogel;Rebecca H Herbst;Karthik Shekhar;Christopher Smillie;Grace Burgin;Toni M Delorey;Michael R Howitt;Yarden Katz;Itay Tirosh;Semir Beyaz;Danielle Dionne;Mei Zhang;Raktima Raychowdhury;Wendy S Garrett;Orit Rozenblatt-Rosen;Hai Ning Shi;Omer Yilmaz;Ramnik J Xavier;Aviv Regev - Nature (2017)
- Massively parallel digital transcriptional profiling of single cells. - Grace X Y Zheng;Jessica M Terry;Phillip Belgrader;Paul Ryvkin;Zachary W Bent;Ryan Wilson;Solongo B Ziraldo;Tobias D Wheeler;Geoff P McDermott;Junjie Zhu;Mark T Gregory;Joe Shuga;Luz Montesclaros;Jason G Underwood;Donald A Masquelier;Stefanie Y Nishimura;Michael Schnall-Levin;Paul W Wyatt;Christopher M Hindson;Rajiv Bharadwaj;Alexander Wong;Kevin D Ness;Lan W Beppu;H Joachim Deeg;Christopher McFarland;Keith R Loeb;William J Valente;Nolan G Ericson;Emily A Stevens;Jerald P Radich;Tarjei S Mikkelsen;Benjamin J Hindson;Jason H Bielas - Nature communications (2017)
- Neuronal or glial progeny: regional differences in radial glia fate. - Paolo Malatesta;Michael A Hack;Eva Hartfuss;Helmut Kettenmann;Wolfgang Klinkert;Frank Kirchhoff;Magdalena Götz - Neuron (2003)
引用本文的文献
- Dynamics and Spatial Genomics of the Nascent Transcriptome by Intron seqFISH. - Sheel Shah;Yodai Takei;Wen Zhou;Eric Lubeck;Jina Yun;Chee-Huat Linus Eng;Noushin Koulena;Christopher Cronin;Christoph Karp;Eric J Liaw;Mina Amin;Long Cai - Cell (2018)
- Toward mapping the human body at a cellular resolution. - Ananda L Roy;Richard S Conroy - Molecular biology of the cell (2018)
- Power in Numbers: Single-Cell RNA-Seq Strategies to Dissect Complex Tissues. - Kenneth D Birnbaum - Annual review of genetics (2018)
- Transition state characteristics during cell differentiation. - Rowan D Brackston;Eszter Lakatos;Michael P H Stumpf - PLoS computational biology (2018)
- The adult human testis transcriptional cell atlas. - Jingtao Guo;Edward J Grow;Hana Mlcochova;Geoffrey J Maher;Cecilia Lindskog;Xichen Nie;Yixuan Guo;Yodai Takei;Jina Yun;Long Cai;Robin Kim;Douglas T Carrell;Anne Goriely;James M Hotaling;Bradley R Cairns - Cell research (2018)
- Perspectives on defining cell types in the brain. - Eran A Mukamel;John Ngai - Current opinion in neurobiology (2019)
- Single-Cell Transcriptome Profiling of Mouse and hESC-Derived Pancreatic Progenitors. - Nicole A J Krentz;Michelle Y Y Lee;Eric E Xu;Shannon L J Sproul;Alexandra Maslova;Shugo Sasaki;Francis C Lynn - Stem cell reports (2018)
- Opening the black box: Stem cell-based modeling of human post-implantation development. - Kenichiro Taniguchi;Idse Heemskerk;Deborah L Gumucio - The Journal of cell biology (2019)
- An integrative approach for building personalized gene regulatory networks for precision medicine. - Monique G P van der Wijst;Dylan H de Vries;Harm Brugge;Harm-Jan Westra;Lude Franke - Genome medicine (2018)
- The Human Cell Atlas: making 'cell space' for disease. - Chris P Ponting - Disease models & mechanisms (2019)
... (1981 更多 篇文献)
© 2025 MaltSci 麦伴科研 - 我们用人工智能技术重塑科研
