Appearance
Artificial intelligence in radiology.
文献信息
| DOI | 10.1038/s41568-018-0016-5 |
|---|---|
| PMID | 29777175 |
| 期刊 | Nature reviews. Cancer |
| 影响因子 | 66.8 |
| JCR 分区 | Q1 |
| 发表年份 | 2018 |
| 被引次数 | 1256 |
| 关键词 | 人工智能, 医学影像分析, 深度学习, 肿瘤学, 临床实施 |
| 文献类型 | Journal Article, Research Support, N.I.H., Extramural, Review |
| ISSN | 1474-175X |
| 页码 | 500-510 |
| 期号 | 18(8) |
| 作者 | Ahmed Hosny, Chintan Parmar, John Quackenbush, Lawrence H Schwartz, Hugo J W L Aerts |
一句话小结
本研究探讨了人工智能(AI)算法在医学图像分析,特别是放射学中的应用,强调了深度学习方法在肿瘤学中的重要性及其对疾病检测和评估的影响。通过提供定量的放射特征评估,AI技术推动了该领域的发展,同时也面临临床实施的挑战。
在麦伴科研 (maltsci.com) 搜索更多文献
人工智能 · 医学影像分析 · 深度学习 · 肿瘤学 · 临床实施
摘要
人工智能(AI)算法,尤其是深度学习,在图像识别任务中展现出显著的进展。从卷积神经网络到变分自编码器的各种方法在医学图像分析领域找到了无数应用,推动该领域迅速发展。在放射学实践中,受过训练的医生通常通过视觉评估医学图像来检测、表征和监测疾病。AI 方法在自动识别成像数据中的复杂模式方面表现出色,能够提供定量而非定性的放射特征评估。在这篇观点文章中,我们建立了对AI方法的总体理解,特别是与基于图像的任务相关的方法。我们探讨了这些方法如何影响放射学的多个方面,特别关注肿瘤学中的应用,并展示了这些方法如何推动该领域的发展。最后,我们讨论了临床实施面临的挑战,并提供了我们对该领域未来发展的看法。
英文摘要
Artificial intelligence (AI) algorithms, particularly deep learning, have demonstrated remarkable progress in image-recognition tasks. Methods ranging from convolutional neural networks to variational autoencoders have found myriad applications in the medical image analysis field, propelling it forward at a rapid pace. Historically, in radiology practice, trained physicians visually assessed medical images for the detection, characterization and monitoring of diseases. AI methods excel at automatically recognizing complex patterns in imaging data and providing quantitative, rather than qualitative, assessments of radiographic characteristics. In this Opinion article, we establish a general understanding of AI methods, particularly those pertaining to image-based tasks. We explore how these methods could impact multiple facets of radiology, with a general focus on applications in oncology, and demonstrate ways in which these methods are advancing the field. Finally, we discuss the challenges facing clinical implementation and provide our perspective on how the domain could be advanced.
麦伴智能科研服务
主要研究问题
- 在放射学中,人工智能如何具体提高肿瘤的检测和监测效果?
- 目前有哪些成功的案例展示了深度学习在医学影像分析中的应用?
- 人工智能在放射学中的应用是否会影响医生的角色和职责?
- 临床实施人工智能技术时,存在哪些主要的挑战和障碍?
- 除了肿瘤,人工智能在放射学的其他应用领域有哪些潜力和发展方向?
核心洞察
研究背景和目的
人工智能(AI)在医学影像分析中展现了显著的进步,特别是在深度学习算法的应用方面。传统上,放射科医生依靠视觉评估医疗影像来检测、表征和监测疾病。AI技术能够自动识别影像数据中的复杂模式,并提供定量评估,旨在提高放射学的效率和准确性。本研究旨在探讨AI在放射学,特别是在肿瘤学中的应用,以及其对临床实践的影响。
主要方法/材料/实验设计
研究采用以下方法进行AI在放射学中的应用分析:
AI方法概述:
- 传统的机器学习方法依赖于预定义的特征工程,提取影像的特定特征(如肿瘤形状和纹理)。
- 深度学习方法(如卷积神经网络CNN)不需要显式特征定义,而是直接从数据中学习特征。
AI在放射学中的应用流程:
关键结果和发现
- 深度学习的优势:研究表明,深度学习在影像分类和分割任务中,性能超过传统的机器学习方法,能够在多种影像类型中实现高效的特征提取和分类。
- 临床应用示例:
- AI在肺癌筛查中的应用,通过自动识别肺结节,提高了早期检测的准确性。
- 在乳腺X线摄影中,深度学习算法显示出与人类放射科医生相当的诊断能力。
主要结论/意义/创新性
AI在放射学中的应用不仅提高了影像分析的效率和准确性,还推动了放射学向数据驱动的定量分析转变。深度学习技术的进步使得AI能够处理复杂的医学影像数据,提供更可靠的临床决策支持。此外,AI的实施可能会减轻放射科医生的工作负担,提高整体医疗服务的质量。
研究局限性和未来方向
- 局限性:当前AI系统在临床应用中仍面临数据稀缺、算法透明性不足和伦理问题等挑战。尤其是在处理复杂病例时,AI的泛化能力仍需进一步验证。
- 未来方向:未来的研究应集中在提高AI模型的透明度和可解释性,解决数据隐私问题,并探索AI与其他医疗数据(如基因组学数据)的整合,以实现更全面的个性化医疗。
| 部分 | 内容 |
|---|---|
| 研究背景和目的 | 探讨AI在放射学中的应用及其对临床实践的影响。 |
| 主要方法 | 采用传统机器学习和深度学习方法进行数据分析,构建AI应用流程图。 |
| 关键结果 | 深度学习在影像分析中表现优于传统方法,能够有效识别和分类影像数据。 |
| 主要结论 | AI提高了放射学的效率和准确性,推动了数据驱动的临床决策。 |
| 研究局限性 | 面临数据稀缺、算法透明性不足和伦理问题等挑战。 |
| 未来方向 | 提高模型透明度,解决隐私问题,探索AI与其他医疗数据的整合。 |
参考文献
- Deep Learning in Medical Image Analysis. - Dinggang Shen;Guorong Wu;Heung-Il Suk - Annual review of biomedical engineering (2017)
- Accurate and reproducible invasive breast cancer detection in whole-slide images: A Deep Learning approach for quantifying tumor extent. - Angel Cruz-Roa;Hannah Gilmore;Ajay Basavanhally;Michael Feldman;Shridar Ganesan;Natalie N C Shih;John Tomaszewski;Fabio A González;Anant Madabhushi - Scientific reports (2017)
- Deep Convolutional Neural Networks for Computer-Aided Detection: CNN Architectures, Dataset Characteristics and Transfer Learning. - Hoo-Chang Shin;Holger R Roth;Mingchen Gao;Le Lu;Ziyue Xu;Isabella Nogues;Jianhua Yao;Daniel Mollura;Ronald M Summers - IEEE transactions on medical imaging (2016)
- Quicksilver: Fast predictive image registration - A deep learning approach. - Xiao Yang;Roland Kwitt;Martin Styner;Marc Niethammer - NeuroImage (2017)
- Unsupervised Deep Learning Applied to Breast Density Segmentation and Mammographic Risk Scoring. - Michiel Kallenberg;Kersten Petersen;Mads Nielsen;Andrew Y Ng; Pengfei Diao;Christian Igel;Celine M Vachon;Katharina Holland;Rikke Rass Winkel;Nico Karssemeijer;Martin Lillholm - IEEE transactions on medical imaging (2016)
- Automated medical image segmentation techniques. - Neeraj Sharma;Lalit M Aggarwal - Journal of medical physics (2010)
- Computer-aided diagnosis: how to move from the laboratory to the clinic. - Bram van Ginneken;Cornelia M Schaefer-Prokop;Mathias Prokop - Radiology (2011)
- Machine Learning methods for Quantitative Radiomic Biomarkers. - Chintan Parmar;Patrick Grossmann;Johan Bussink;Philippe Lambin;Hugo J W L Aerts - Scientific reports (2015)
- Associations of Radiomic Data Extracted from Static and Respiratory-Gated CT Scans with Disease Recurrence in Lung Cancer Patients Treated with SBRT. - Elizabeth Huynh;Thibaud P Coroller;Vivek Narayan;Vishesh Agrawal;John Romano;Idalid Franco;Chintan Parmar;Ying Hou;Raymond H Mak;Hugo J W L Aerts - PloS one (2017)
- Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs. - Varun Gulshan;Lily Peng;Marc Coram;Martin C Stumpe;Derek Wu;Arunachalam Narayanaswamy;Subhashini Venugopalan;Kasumi Widner;Tom Madams;Jorge Cuadros;Ramasamy Kim;Rajiv Raman;Philip C Nelson;Jessica L Mega;Dale R Webster - JAMA (2016)
引用本文的文献
- We need smarter trigger tools for diagnosing sepsis in children in Canada. - J Mark Ansermino;Matthew O Wiens;Niranjan Kissoon - CMAJ : Canadian Medical Association journal = journal de l'Association medicale canadienne (2018)
- Artificial intelligence and nuclear medicine. - Margaret Hall - Nuclear medicine communications (2019)
- The Continuing Evolution of Molecular Functional Imaging in Clinical Oncology: The Road to Precision Medicine and Radiogenomics (Part I). - Tanvi Vaidya;Archi Agrawal;Shivani Mahajan;Meenakshi H Thakur;Abhishek Mahajan - Molecular diagnosis & therapy (2019)
- Deep learning for lung cancer prognostication: A retrospective multi-cohort radiomics study. - Ahmed Hosny;Chintan Parmar;Thibaud P Coroller;Patrick Grossmann;Roman Zeleznik;Avnish Kumar;Johan Bussink;Robert J Gillies;Raymond H Mak;Hugo J W L Aerts - PLoS medicine (2018)
- Evaluation of musculoskeletal tumors in the new era of artificial intelligence. - Flávia Martins Costa - Radiologia brasileira (2018)
- Shining Light Into the Black Box of Machine Learning. - William Hsu;Joann G Elmore - Journal of the National Cancer Institute (2019)
- Artificial intelligence in cancer imaging: Clinical challenges and applications. - Wenya Linda Bi;Ahmed Hosny;Matthew B Schabath;Maryellen L Giger;Nicolai J Birkbak;Alireza Mehrtash;Tavis Allison;Omar Arnaout;Christopher Abbosh;Ian F Dunn;Raymond H Mak;Rulla M Tamimi;Clare M Tempany;Charles Swanton;Udo Hoffmann;Lawrence H Schwartz;Robert J Gillies;Raymond Y Huang;Hugo J W L Aerts - CA: a cancer journal for clinicians (2019)
- Decision Support Systems in Oncology. - Seán Walsh;Evelyn E C de Jong;Janna E van Timmeren;Abdalla Ibrahim;Inge Compter;Jurgen Peerlings;Sebastian Sanduleanu;Turkey Refaee;Simon Keek;Ruben T H M Larue;Yvonka van Wijk;Aniek J G Even;Arthur Jochems;Mohamed S Barakat;Ralph T H Leijenaar;Philippe Lambin - JCO clinical cancer informatics (2019)
- Artificial intelligence in medical imaging of the liver. - Li-Qiang Zhou;Jia-Yu Wang;Song-Yuan Yu;Ge-Ge Wu;Qi Wei;You-Bin Deng;Xing-Long Wu;Xin-Wu Cui;Christoph F Dietrich - World journal of gastroenterology (2019)
- Artificial intelligence in radiology: friend or foe? Where are we now and where are we heading? - Emre Pakdemirli - Acta radiologica open (2019)
... (1246 更多 篇文献)
© 2025 MaltSci 麦伴科研 - 我们用人工智能技术重塑科研
