Skip to content

Brain-Computer Interface Spellers: A Review.

文献信息

DOI10.3390/brainsci8040057
PMID29601538
期刊Brain sciences
影响因子2.8
JCR 分区Q3
发表年份2018
被引次数98
关键词脑-计算机接口(BCI), 图形用户界面(GUI), 运动想象(MI), P300, 稳态视觉诱发电位(SSVEP)
文献类型Journal Article, Review
ISSN2076-3425
期号8(4)
作者Aya Rezeika, Mihaly Benda, Piotr Stawicki, Felix Gembler, Abdul Saboor, Ivan Volosyak

一句话小结

本研究综述了脑-计算机接口(BCI)拼写器的发展,分类了基于P300、稳态视觉诱发电位(SSVEP)和运动想象(MI)等不同BCI范式的拼写系统,旨在整合自2010年以来的成功案例并提供对早期系统的提及。该综述不仅为研究人员提供了对不同拼写器的比较和理解,还有助于识别适合用户的系统,推动BCI领域的进一步发展。

在麦伴科研 (maltsci.com) 搜索更多文献

脑-计算机接口(BCI) · 图形用户界面(GUI) · 运动想象(MI) · P300 · 稳态视觉诱发电位(SSVEP)

摘要

脑-计算机接口(BCI)提供了一种通过脑信号进行非肌肉沟通的新方法。BCI拼写器可以被视为最早发布的BCI应用之一,并为该领域的许多进展打开了大门。尽管在过去几十年中开发了许多BCI拼写器,但据我们所知,目前尚无综述文章描述在这一重要领域提出和研究的不同拼写器。所介绍的拼写系统根据主要的BCI范式进行分类:P300、稳态视觉诱发电位(SSVEP)和运动想象(MI)。不同的BCI范式需要特定的脑电图(EEG)信号特征,并促使相应图形用户界面(GUI)的开发。本综述的目的是整合自2010年以来发布的最成功的BCI拼写器,同时提及一些其他专门为拼写目的构建的较早系统。我们旨在通过展示不同拼写器的亮点并将其汇总在一篇综述中,来帮助研究人员和相关人士。对不同拼写器进行客观比较几乎是不可能的,因为每个拼写器都有其变量、参数和条件。然而,收集的信息和关于不同BCI拼写器的分类可以提供帮助,因为这可能识别出适合第一手用户的系统,以及为BCI研究人员提供从之前研究中学习和发展的机会。

英文摘要

A Brain-Computer Interface (BCI) provides a novel non-muscular communication method via brain signals. A BCI-speller can be considered as one of the first published BCI applications and has opened the gate for many advances in the field. Although many BCI-spellers have been developed during the last few decades, to our knowledge, no reviews have described the different spellers proposed and studied in this vital field. The presented speller systems are categorized according to major BCI paradigms: P300, steady-state visual evoked potential (SSVEP), and motor imagery (MI). Different BCI paradigms require specific electroencephalogram (EEG) signal features and lead to the development of appropriate Graphical User Interfaces (GUIs). The purpose of this review is to consolidate the most successful BCI-spellers published since 2010, while mentioning some other older systems which were built explicitly for spelling purposes. We aim to assist researchers and concerned individuals in the field by illustrating the highlights of different spellers and presenting them in one review. It is almost impossible to carry out an objective comparison between different spellers, as each has its variables, parameters, and conditions. However, the gathered information and the provided taxonomy about different BCI-spellers can be helpful, as it could identify suitable systems for first-hand users, as well as opportunities of development and learning from previous studies for BCI researchers.

麦伴智能科研服务

智能阅读回答你对文献的任何问题,帮助理解文献中的复杂图表和公式
定位观点定位某个观点在文献中的蛛丝马迹
加入知识库完成数据提取,报告撰写等更多高级知识挖掘功能

主要研究问题

  1. BCI拼写器在不同应用场景中的表现如何,特别是在医疗和教育领域?
  2. 在设计BCI拼写器的图形用户界面时,哪些用户体验原则最为重要?
  3. P300和SSVEP两种BCI范式的优缺点分别是什么,它们在拼写器中的应用效果如何?
  4. 如何评估BCI拼写器的性能和用户满意度,是否有标准化的测试方法?
  5. 在未来的BCI拼写器研究中,有哪些新兴技术或趋势可能会影响其发展?

核心洞察

研究背景和目的

脑-计算机接口(BCI)是一种通过脑信号实现非肌肉通信的新方法,BCI拼写器作为早期的BCI应用之一,为该领域的许多进展铺平了道路。尽管在过去几十年中开发了多种BCI拼写器,但尚未有系统的综述对不同拼写器进行描述。本文旨在整合2010年以来成功的BCI拼写器,帮助研究人员和相关人士了解不同拼写器的亮点及其发展机会。

主要方法/材料/实验设计

本综述采用PRISMA指南进行文献研究,主要从IEEE Xplore和Web of Science数据库中筛选与BCI拼写器相关的文献。研究重点包括基于不同脑电图(EEG)信号特征的拼写器系统,分类依据主要包括BCI类型(P300、稳态视觉诱发电位(SSVEP)、运动想象(MI))及其用户界面设计。

Mermaid diagram

关键结果和发现

  • P300拼写器:使用“奇偶性范式”,通过刺激特定行列产生P300波。大多数研究集中在改进其用户界面设计和分类算法上。
  • SSVEP拼写器:基于持续的视觉刺激,无需校准,通常比P300拼写器速度更快。
  • 运动想象拼写器:依赖用户的想象运动进行控制,具有高度的自主性,但通常需要较长的训练时间。

不同类型的BCI拼写器在信息传输速率(ITR)和准确性方面表现出显著差异,且性能受多种因素影响,包括刺激类型、用户体验和界面设计。

主要结论/意义/创新性

本综述提供了BCI拼写器的全面分类和比较,强调了用户界面设计在BCI系统中的重要性。通过总结近年来的研究进展,指出了未来可能的研究方向,包括异步BCI和多模态刺激系统的开发。这些进展为提升BCI拼写器的实用性和用户友好性提供了基础。

研究局限性和未来方向

尽管本文涵盖了多个BCI拼写器系统的研究,但由于每个系统的设计和参数不同,客观比较仍然困难。未来的研究应关注于:

  • 提高拼写器的速度和准确性。
  • 开发更易于使用的用户界面。
  • 扩展对运动神经元疾病患者的测试,以验证系统的有效性和可用性。
  • 结合其他非BCI系统的优势,开发混合型BCI拼写器,以满足更广泛用户的需求。

参考文献

  1. Use of a Green Familiar Faces Paradigm Improves P300-Speller Brain-Computer Interface Performance. - Qi Li;Shuai Liu;Jian Li;Ou Bai - PloS one (2015)
  2. An Auditory-Tactile Visual Saccade-Independent P300 Brain-Computer Interface. - Erwei Yin;Timothy Zeyl;Rami Saab;Dewen Hu;Zongtan Zhou;Tom Chau - International journal of neural systems (2016)
  3. Brain-computer interface technology: a review of the first international meeting. - J R Wolpaw;N Birbaumer;W J Heetderks;D J McFarland;P H Peckham;G Schalk;E Donchin;L A Quatrano;C J Robinson;T M Vaughan - IEEE transactions on rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society (2000)
  4. A Dynamically Optimized SSVEP Brain-Computer Interface (BCI) Speller. - Erwei Yin;Zongtan Zhou;Jun Jiang;Yang Yu;Dewen Hu - IEEE transactions on bio-medical engineering (2015)
  5. A Hybrid Brain-Computer Interface Based on the Fusion of P300 and SSVEP Scores. - Erwei Yin;Timothy Zeyl;Rami Saab;Tom Chau;Dewen Hu;Zongtan Zhou - IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society (2015)
  6. Brain-computer interface using water-based electrodes. - Ivan Volosyak;Diana Valbuena;Tatsiana Malechka;Jan Peuscher;Axel Gräser - Journal of neural engineering (2010)
  7. Training leads to increased auditory brain-computer interface performance of end-users with motor impairments. - S Halder;I Käthner;A Kübler - Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology (2016)
  8. Assistive device with conventional, alternative, and brain-computer interface inputs to enhance interaction with the environment for people with amyotrophic lateral sclerosis: a feasibility and usability study. - Francesca Schettini;Angela Riccio;Luca Simione;Giulia Liberati;Mario Caruso;Vittorio Frasca;Barbara Calabrese;Massimo Mecella;Alessia Pizzimenti;Maurizio Inghilleri;Donatella Mattia;Febo Cincotti - Archives of physical medicine and rehabilitation (2015)
  9. New stimulation pattern design to improve P300-based matrix speller performance at high flash rate. - Chantri Polprasert;Pratana Kukieattikool;Tanee Demeechai;James A Ritcey;Siwaruk Siwamogsatham - Journal of neural engineering (2013)
  10. Predictive spelling with a P300-based brain-computer interface: Increasing the rate of communication. - D B Ryan;G E Frye;G Townsend;D R Berry;S Mesa-G;N A Gates;E W Sellers - International journal of human-computer interaction (2011)

引用本文的文献

  1. A 20-Questions-Based Binary Spelling Interface for Communication Systems. - Alessandro Tonin;Niels Birbaumer;Ujwal Chaudhary - Brain sciences (2018)
  2. A New Frontier: The Convergence of Nanotechnology, Brain Machine Interfaces, and Artificial Intelligence. - Gabriel A Silva - Frontiers in neuroscience (2018)
  3. Brain⁻Computer Interfaces for Human Augmentation. - Davide Valeriani;Caterina Cinel;Riccardo Poli - Brain sciences (2019)
  4. Neurotechnologies for Human Cognitive Augmentation: Current State of the Art and Future Prospects. - Caterina Cinel;Davide Valeriani;Riccardo Poli - Frontiers in human neuroscience (2019)
  5. Asynchronous non-invasive high-speed BCI speller with robust non-control state detection. - Sebastian Nagel;Martin Spüler - Scientific reports (2019)
  6. Dynamic time window mechanism for time synchronous VEP-based BCIs-Performance evaluation with a dictionary-supported BCI speller employing SSVEP and c-VEP. - Felix Gembler;Piotr Stawicki;Abdul Saboor;Ivan Volosyak - PloS one (2019)
  7. Vigilance state fluctuations and performance using brain-computer interface for communication. - Barry Oken;Tab Memmott;Brandon Eddy;Jack Wiedrick;Melanie Fried-Oken - Brain computer interfaces (Abingdon, England) (2018)
  8. Impact of Speller Size on a Visual P300 Brain-Computer Interface (BCI) System under Two Conditions of Constraint for Eye Movement. - R Ron-Angevin;L Garcia;Á Fernández-Rodríguez;J Saracco;J M André;V Lespinet-Najib - Computational intelligence and neuroscience (2019)
  9. User Experience of 7 Mobile Electroencephalography Devices: Comparative Study. - Thea Radüntz;Beate Meffert - JMIR mHealth and uHealth (2019)
  10. Happy emotion cognition of bimodal audiovisual stimuli optimizes the performance of the P300 speller. - Zhaohua Lu;Qi Li;Ning Gao;Jingjing Yang;Ou Bai - Brain and behavior (2019)

... (88 更多 篇文献)


© 2025 MaltSci 麦伴科研 - 我们用人工智能技术重塑科研