Skip to content

mRNA vaccines - a new era in vaccinology.

文献信息

DOI10.1038/nrd.2017.243
PMID29326426
期刊Nature reviews. Drug discovery
影响因子101.8
JCR 分区Q1
发表年份2018
被引次数2025
关键词mRNA疫苗, 疫苗学, 传染病, 癌症, 技术进步
文献类型Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't, Review
ISSN1474-1776
页码261-279
期号17(4)
作者Norbert Pardi, Michael J Hogan, Frederick W Porter, Drew Weissman

一句话小结

本综述探讨了信使RNA(mRNA)疫苗作为传统疫苗的替代方案,强调其在高效性、快速开发及低成本生产方面的优势,并指出技术进步已显著提升了mRNA的稳定性和体内传递效率。研究表明,多种mRNA疫苗在动物模型和人类中取得了积极成果,为其在感染性疾病和癌症治疗中的广泛应用奠定了基础。

在麦伴科研 (maltsci.com) 搜索更多文献

mRNA疫苗 · 疫苗学 · 传染病 · 癌症 · 技术进步

摘要

信使RNA(mRNA)疫苗代表了一种有前景的替代传统疫苗方法的选择,因为它们具有高效能、快速开发能力以及潜在的低成本生产和安全施用的优势。然而,直到最近,它们的应用受到mRNA不稳定性和体内传递效率低下的限制。最近的技术进步在很大程度上克服了这些问题,针对感染性疾病和几种类型癌症的多种mRNA疫苗平台在动物模型和人类中都表现出令人鼓舞的结果。本综述提供了mRNA疫苗的详细概述,并考虑了推动这一有前景的疫苗平台广泛应用于治疗的未来方向和挑战。

英文摘要

mRNA vaccines represent a promising alternative to conventional vaccine approaches because of their high potency, capacity for rapid development and potential for low-cost manufacture and safe administration. However, their application has until recently been restricted by the instability and inefficient in vivo delivery of mRNA. Recent technological advances have now largely overcome these issues, and multiple mRNA vaccine platforms against infectious diseases and several types of cancer have demonstrated encouraging results in both animal models and humans. This Review provides a detailed overview of mRNA vaccines and considers future directions and challenges in advancing this promising vaccine platform to widespread therapeutic use.

麦伴智能科研服务

智能阅读回答你对文献的任何问题,帮助理解文献中的复杂图表和公式
定位观点定位某个观点在文献中的蛛丝马迹
加入知识库完成数据提取,报告撰写等更多高级知识挖掘功能

主要研究问题

  1. mRNA疫苗在治疗癌症方面的应用有哪些具体的进展和挑战?
  2. 除了传染病,mRNA疫苗在其他疾病领域的潜在应用是什么?
  3. mRNA疫苗的生产成本和传统疫苗相比,具体有哪些优势和劣势?
  4. 未来mRNA疫苗的研发方向可能会集中在哪些技术创新上?
  5. 如何评估mRNA疫苗在不同人群中的安全性和有效性?

核心洞察

研究背景和目的

mRNA疫苗作为一种新兴的疫苗平台,具有高效性、快速开发能力和潜在的低成本制造优势。尽管早期由于mRNA的不稳定性和体内递送效率低下而限制了其应用,但近年来的技术进步使得多种mRNA疫苗平台在传染病和癌症的动物模型及人类临床试验中取得了令人鼓舞的结果。本综述旨在全面概述mRNA疫苗的现状,并探讨其未来的发展方向及面临的挑战。

主要方法/材料/实验设计

mRNA疫苗的设计和开发过程涉及多个关键步骤,以下是其技术路线的简要描述:

Mermaid diagram
  1. IVT mRNA合成:通过使用DNA模板和RNA聚合酶进行体外转录,合成mRNA。
  2. mRNA修饰与纯化:采用不同的化学修饰(如假尿苷)以提高稳定性和翻译效率,并通过高效液相色谱等方法去除杂质。
  3. 载体复合:将mRNA与载体(如阳离子脂质或聚合物)复合以提高体内递送效率。
  4. 体内递送:通过不同的给药途径(如肌肉注射、皮内注射等)将mRNA递送到目标细胞。
  5. 免疫应答:诱导机体产生特异性免疫应答,包括T细胞和B细胞的激活。

关键结果和发现

  • 安全性和有效性:mRNA疫苗被证明具有良好的安全性,并能够在动物模型中产生强烈的免疫反应。
  • 疫苗平台的多样性:研究表明,mRNA疫苗不仅适用于传染病(如流感、寨卡病毒等),也在癌症免疫治疗中显示出潜力。
  • 技术进步:对mRNA的修饰和递送系统的改进(如脂质纳米颗粒)显著提高了疫苗的稳定性和免疫原性。

主要结论/意义/创新性

mRNA疫苗代表了疫苗研发的新纪元,具备快速响应新兴传染病和癌症的潜力。其高效的生产方式和良好的安全性使其成为未来疫苗研发的重要方向。尤其是在应对疫情时,mRNA疫苗的快速开发能力尤为重要。

研究局限性和未来方向

  • 局限性:尽管mRNA疫苗在动物实验中表现良好,但在人类临床试验中,其免疫原性常常低于预期,这提示需要进一步优化疫苗设计。
  • 未来方向:未来的研究应集中在优化mRNA序列、提高递送效率和降低不良反应上。此外,个性化疫苗的开发,如针对特定肿瘤突变的mRNA疫苗,将是一个重要的研究领域。
研究要点描述
研究背景mRNA疫苗作为新兴平台,具备高效、快速和安全的优势。
方法与设计包括IVT合成、修饰、载体复合和体内递送等步骤。
关键发现证明了mRNA疫苗的安全性和有效性,适用于多种疾病。
结论与创新性mRNA疫苗代表疫苗研发的新方向,具有快速应对疫情的潜力。
局限性与未来方向需优化免疫原性,未来可关注个性化疫苗的开发。

参考文献

  1. Long overall survival after dendritic cell vaccination in metastatic uveal melanoma patients. - Kalijn F Bol;Hanneke W Mensink;Erik H J G Aarntzen;Gerty Schreibelt;Jan E E Keunen;Pierre G Coulie;Annelies de Klein;Cornelis J A Punt;Dion Paridaens;Carl G Figdor;I Jolanda M de Vries - American journal of ophthalmology (2014)
  2. Dendritic cells transfected with interleukin-12 and tumor-associated antigen messenger RNA induce high avidity cytotoxic T cells. - H J Bontkes;D Kramer;J J Ruizendaal;E W M Kueter;V F I van Tendeloo;C J L M Meijer;E Hooijberg - Gene therapy (2007)
  3. The ReNAissanCe of mRNA-based cancer therapy. - Sandra Van Lint;Dries Renmans;Katrijn Broos;Heleen Dewitte;Ine Lentacker;Carlo Heirman;Karine Breckpot;Kris Thielemans - Expert review of vaccines (2015)
  4. mRNA-based cancer vaccine: prevention of B16 melanoma progression and metastasis by systemic injection of MART1 mRNA histidylated lipopolyplexes. - M Mockey;E Bourseau;V Chandrashekhar;A Chaudhuri;S Lafosse;E Le Cam;V F J Quesniaux;B Ryffel;C Pichon;P Midoux - Cancer gene therapy (2007)
  5. Horizontal transfer of RNA and proteins between cells by extracellular microvesicles: 14 years later. - Mariusz Z Ratajczak;Janina Ratajczak - Clinical and translational medicine (2016)
  6. Long-term Survival in Glioblastoma with Cytomegalovirus pp65-Targeted Vaccination. - Kristen A Batich;Elizabeth A Reap;Gary E Archer;Luis Sanchez-Perez;Smita K Nair;Robert J Schmittling;Pam Norberg;Weihua Xie;James E Herndon;Patrick Healy;Roger E McLendon;Allan H Friedman;Henry S Friedman;Darell Bigner;Gordana Vlahovic;Duane A Mitchell;John H Sampson - Clinical cancer research : an official journal of the American Association for Cancer Research (2017)
  7. A brief history of T cell help to B cells. - Shane Crotty - Nature reviews. Immunology (2015)
  8. Modification of antigen-encoding RNA increases stability, translational efficacy, and T-cell stimulatory capacity of dendritic cells. - Silke Holtkamp;Sebastian Kreiter;Abderraouf Selmi;Petra Simon;Michael Koslowski;Christoph Huber;Ozlem Türeci;Ugur Sahin - Blood (2006)
  9. Effect of thymus cell injections on germinal center formation in lymphoid tissues of nude (thymusless) mice. - E B Jacobson;L H Caporale;G J Thorbecke - Cellular immunology (1974)
  10. Self-adjuvanted mRNA vaccination in advanced prostate cancer patients: a first-in-man phase I/IIa study. - Hubert Kübler;Birgit Scheel;Ulrike Gnad-Vogt;Kurt Miller;Wolfgang Schultze-Seemann;Frank Vom Dorp;Giorgio Parmiani;Christian Hampel;Steffen Wedel;Lutz Trojan;Dieter Jocham;Tobias Maurer;Gerd Rippin;Mariola Fotin-Mleczek;Florian von der Mülbe;Jochen Probst;Ingmar Hoerr;Karl-Josef Kallen;Thomas Lander;Arnulf Stenzl - Journal for immunotherapy of cancer (2015)

引用本文的文献

  1. New Kids on the Block: RNA-Based Influenza Virus Vaccines. - Francesco Berlanda Scorza;Norbert Pardi - Vaccines (2018)
  2. Tapping the RNA world for therapeutics. - Judy Lieberman - Nature structural & molecular biology (2018)
  3. Vaccines work. - Nature communications (2018)
  4. Nanoscale platforms for messenger RNA delivery. - Bin Li;Xinfu Zhang;Yizhou Dong - Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology (2019)
  5. Nucleoside-modified mRNA vaccines induce potent T follicular helper and germinal center B cell responses. - Norbert Pardi;Michael J Hogan;Martin S Naradikian;Kaela Parkhouse;Derek W Cain;Letitia Jones;M Anthony Moody;Hans P Verkerke;Arpita Myles;Elinor Willis;Celia C LaBranche;David C Montefiori;Jenna L Lobby;Kevin O Saunders;Hua-Xin Liao;Bette T Korber;Laura L Sutherland;Richard M Scearce;Peter T Hraber;István Tombácz;Hiromi Muramatsu;Houping Ni;Daniel A Balikov;Charles Li;Barbara L Mui;Ying K Tam;Florian Krammer;Katalin Karikó;Patricia Polacino;Laurence C Eisenlohr;Thomas D Madden;Michael J Hope;Mark G Lewis;Kelly K Lee;Shiu-Lok Hu;Scott E Hensley;Michael P Cancro;Barton F Haynes;Drew Weissman - The Journal of experimental medicine (2018)
  6. Exploiting vita-PAMPs in vaccines. - J Magarian Blander;Gaetan Barbet - Current opinion in pharmacology (2018)
  7. Enhanced mRNA delivery into lymphocytes enabled by lipid-varied libraries of charge-altering releasable transporters. - Colin J McKinlay;Nancy L Benner;Ole A Haabeth;Robert M Waymouth;Paul A Wender - Proceedings of the National Academy of Sciences of the United States of America (2018)
  8. Lipid Nanoparticle-Delivered Chemically Modified mRNA Restores Chloride Secretion in Cystic Fibrosis. - Ema Robinson;Kelvin D MacDonald;Kai Slaughter;Madison McKinney;Siddharth Patel;Conroy Sun;Gaurav Sahay - Molecular therapy : the journal of the American Society of Gene Therapy (2018)
  9. Harnessing T Follicular Helper Cell Responses for HIV Vaccine Development. - Julia Niessl;Daniel E Kaufmann - Viruses (2018)
  10. Zika virus vaccines. - Peter Abbink;Kathryn E Stephenson;Dan H Barouch - Nature reviews. Microbiology (2018)

... (2015 更多 篇文献)


© 2025 MaltSci 麦伴科研 - 我们用人工智能技术重塑科研