Skip to content

The Principles of Engineering Immune Cells to Treat Cancer.

文献信息

DOI10.1016/j.cell.2017.01.016
PMID28187291
期刊Cell
影响因子42.5
JCR 分区Q1
发表年份2017
被引次数536
关键词工程免疫细胞, CAR T细胞, 合成生物学, 精准治疗
文献类型Journal Article, Review, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't
ISSN0092-8674
页码724-740
期号168(4)
作者Wendell A Lim, Carl H June

一句话小结

本研究探讨了嵌合抗原受体(CAR)T细胞作为新型癌症治疗的潜力,并强调了需克服的主要挑战以确保其安全性和有效性。通过合成生物学的新兴方法,研究者们展示了如何利用这些工具设计出下一代智能T细胞,以实现更精准的肿瘤治疗。

在麦伴科研 (maltsci.com) 搜索更多文献

工程免疫细胞 · CAR T细胞 · 合成生物学 · 精准治疗

摘要

嵌合抗原受体(CAR)T细胞已证明工程化免疫细胞可以作为一种强大的新型癌症治疗药物。临床经验帮助我们明确了必须克服的主要挑战,以使工程化的T细胞成为一种可靠、安全和有效的平台,能够针对广泛的肿瘤进行应用。合成生物学在细胞工程方面的新兴方法为我们提供了一套广泛扩展的工具,用于编程免疫细胞。我们讨论了这些工具如何被用来设计下一代智能T细胞精准治疗药物。

英文摘要

Chimeric antigen receptor (CAR) T cells have proven that engineered immune cells can serve as a powerful new class of cancer therapeutics. Clinical experience has helped to define the major challenges that must be met to make engineered T cells a reliable, safe, and effective platform that can be deployed against a broad range of tumors. The emergence of synthetic biology approaches for cellular engineering is providing us with a broadly expanded set of tools for programming immune cells. We discuss how these tools could be used to design the next generation of smart T cell precision therapeutics.

麦伴智能科研服务

智能阅读回答你对文献的任何问题,帮助理解文献中的复杂图表和公式
定位观点定位某个观点在文献中的蛛丝马迹
加入知识库完成数据提取,报告撰写等更多高级知识挖掘功能

主要研究问题

  1. 如何利用合成生物学的方法进一步提升CAR T细胞的疗效?
  2. 在工程化免疫细胞的过程中,如何解决细胞安全性和有效性之间的平衡?
  3. 针对不同类型的肿瘤,工程化免疫细胞的设计策略有何不同?
  4. 在临床应用中,工程化免疫细胞治疗面临哪些主要挑战,如何克服?
  5. 未来的智能T细胞疗法可能会如何改变癌症治疗的现状?

核心洞察

研究背景和目的

随着免疫细胞工程技术的发展,嵌合抗原受体(CAR)T细胞作为一种新型癌症治疗手段,展现出强大的抗肿瘤潜力。近年来,针对B细胞癌症的临床试验显示出70%-90%的响应率。然而,安全性、脱靶毒性和耐药性等问题仍需解决。本文旨在探讨合成生物学如何为下一代智能T细胞精准治疗提供新工具和方法。

主要方法/材料/实验设计

本研究综述了当前工程化T细胞的治疗策略,并展望了合成生物学在癌症治疗中的应用。研究主要包括以下几个方面:

  1. 工程化T细胞的设计

    • 利用合成生物学构建可编程的细胞调控电路。
    • 集成不同的治疗策略,如抗体、疫苗和细胞移植。
  2. 临床应用案例

    • CD19 CAR T细胞作为成功案例,展示了工程化T细胞在B细胞恶性肿瘤中的有效性。
    • 讨论了其他CAR T细胞在实体瘤中的挑战与前景。
  3. 细胞行为的工程化

    • 设计双重识别电路(AND-gate和NOT-gate),提高对肿瘤细胞的识别精度。
    • 采用诱导性信号开关技术,调控T细胞的活性和生存。
Mermaid diagram

关键结果和发现

  • 成功案例:CD19 CAR T细胞治疗急性淋巴细胞白血病(ALL)显示出显著的疗效,但伴随B细胞缺失的长期后果。
  • 实体瘤挑战:工程化T细胞在固体肿瘤中面临识别特异性、微环境抑制等多重挑战。
  • 工程化进展:通过合成生物学手段,可以实现对T细胞功能的精确调控和优化,提高其抗肿瘤效果。

主要结论/意义/创新性

工程化T细胞代表了一种新的精准治疗平台,能够根据肿瘤的特征进行智能响应。合成生物学为设计和优化治疗T细胞提供了强大的工具,未来有望在癌症治疗中发挥更大的作用。此外,这一方法也可能扩展到其他疾病的细胞治疗中。

研究局限性和未来方向

  • 局限性:目前的CAR T细胞治疗仍然面临安全性和有效性的问题,尤其是在实体瘤中的应用。
  • 未来方向:需进一步研究如何提高T细胞在肿瘤微环境中的存活和增殖能力,同时开发更安全的控制机制,以降低副作用和提高治疗效果。探索结合免疫检查点抑制剂的联合治疗策略也是未来的重要方向。

参考文献

  1. Relation of clinical culture method to T-cell memory status and efficacy in xenograft models of adoptive immunotherapy. - David M Barrett;Nathan Singh;Xiaojun Liu;Shuguang Jiang;Carl H June;Stephan A Grupp;Yangbing Zhao - Cytotherapy (2014)
  2. Antileukemic effect of graft-versus-host disease in human recipients of allogeneic-marrow grafts. - P L Weiden;N Flournoy;E D Thomas;R Prentice;A Fefer;C D Buckner;R Storb - The New England journal of medicine (1979)
  3. Prospects for gene-engineered T cell immunotherapy for solid cancers. - Christopher A Klebanoff;Steven A Rosenberg;Nicholas P Restifo - Nature medicine (2016)
  4. Cancer regression and neurological toxicity following anti-MAGE-A3 TCR gene therapy. - Richard A Morgan;Nachimuthu Chinnasamy;Daniel Abate-Daga;Alena Gros;Paul F Robbins;Zhili Zheng;Mark E Dudley;Steven A Feldman;James C Yang;Richard M Sherry;Giao Q Phan;Marybeth S Hughes;Udai S Kammula;Akemi D Miller;Crystal J Hessman;Ashley A Stewart;Nicholas P Restifo;Martha M Quezado;Meghna Alimchandani;Avi Z Rosenberg;Avindra Nath;Tongguang Wang;Bibiana Bielekova;Simone C Wuest;Nirmala Akula;Francis J McMahon;Susanne Wilde;Barbara Mosetter;Dolores J Schendel;Carolyn M Laurencot;Steven A Rosenberg - Journal of immunotherapy (Hagerstown, Md. : 1997) (2013)
  5. Eradication of B-lineage cells and regression of lymphoma in a patient treated with autologous T cells genetically engineered to recognize CD19. - James N Kochenderfer;Wyndham H Wilson;John E Janik;Mark E Dudley;Maryalice Stetler-Stevenson;Steven A Feldman;Irina Maric;Mark Raffeld;Debbie-Ann N Nathan;Brock J Lanier;Richard A Morgan;Steven A Rosenberg - Blood (2010)
  6. Engineering Customized Cell Sensing and Response Behaviors Using Synthetic Notch Receptors. - Leonardo Morsut;Kole T Roybal;Xin Xiong;Russell M Gordley;Scott M Coyle;Matthew Thomson;Wendell A Lim - Cell (2016)
  7. Chimeric antigen receptor T Cells with dissociated signaling domains exhibit focused antitumor activity with reduced potential for toxicity in vivo. - Evripidis Lanitis;Mathilde Poussin;Alex W Klattenhoff;Degang Song;Raphael Sandaltzopoulos;Carl H June;Daniel J Powell - Cancer immunology research (2013)
  8. Tumor-targeted T cells modified to secrete IL-12 eradicate systemic tumors without need for prior conditioning. - Hollie J Pegram;James C Lee;Erik G Hayman;Gavin H Imperato;Thomas F Tedder;Michel Sadelain;Renier J Brentjens - Blood (2012)
  9. Current concepts in the diagnosis and management of cytokine release syndrome. - Daniel W Lee;Rebecca Gardner;David L Porter;Chrystal U Louis;Nabil Ahmed;Michael Jensen;Stephan A Grupp;Crystal L Mackall - Blood (2014)
  10. Stepwise differentiation of CD4 memory T cells defined by expression of CCR7 and CD27. - Ruth D Fritsch;Xinglei Shen;Gary P Sims;Karen S Hathcock;Richard J Hodes;Peter E Lipsky - Journal of immunology (Baltimore, Md. : 1950) (2005)

引用本文的文献

  1. Current status and perspectives of chimeric antigen receptor modified T cells for cancer treatment. - Zhenguang Wang;Yelei Guo;Weidong Han - Protein & cell (2017)
  2. Chimeric antigen receptor (CAR)-modified natural killer cell-based immunotherapy and immunological synapse formation in cancer and HIV. - Dongfang Liu;Shuo Tian;Kai Zhang;Wei Xiong;Ndongala Michel Lubaki;Zhiying Chen;Weidong Han - Protein & cell (2017)
  3. Oncolytic Immunotherapy: Conceptual Evolution, Current Strategies, and Future Perspectives. - Zong Sheng Guo;Zuqiang Liu;Stacy Kowalsky;Mathilde Feist;Pawel Kalinski;Binfeng Lu;Walter J Storkus;David L Bartlett - Frontiers in immunology (2017)
  4. Molecular Dissection of CD8+ T-Cell Dysfunction. - Chao Wang;Meromit Singer;Ana C Anderson - Trends in immunology (2017)
  5. Adoptive transfer of murine T cells expressing a chimeric-PD1-Dap10 receptor as an immunotherapy for lymphoma. - Adam Lynch;William Hawk;Emily Nylen;Sean Ober;Pierre Autin;Amorette Barber - Immunology (2017)
  6. Metabolic Regulation of T Cell Longevity and Function in Tumor Immunotherapy. - Rigel J Kishton;Madhusudhanan Sukumar;Nicholas P Restifo - Cell metabolism (2017)
  7. NK Cell Exhaustion. - Jiacheng Bi;Zhigang Tian - Frontiers in immunology (2017)
  8. Reprogramming cellular functions with engineered membrane proteins. - Caroline Arber;Melvin Young;Patrick Barth - Current opinion in biotechnology (2017)
  9. Tumor immunity requires border patrol to fight the enemy within. - Derk Amsen;Pleun Hombrink;Rene A W van Lier - Nature immunology (2017)
  10. Adnectin-Based Design of Chimeric Antigen Receptor for T Cell Engineering. - Xiaolu Han;Gunce E Cinay;Yifan Zhao;Yunfei Guo;Xiaoyang Zhang;Pin Wang - Molecular therapy : the journal of the American Society of Gene Therapy (2017)

... (526 更多 篇文献)


© 2025 MaltSci 麦伴科研 - 我们用人工智能技术重塑科研