Appearance
BASiCS: Bayesian Analysis of Single-Cell Sequencing Data.
文献信息
| DOI | 10.1371/journal.pcbi.1004333 |
|---|---|
| PMID | 26107944 |
| 期刊 | PLoS computational biology |
| 影响因子 | 3.6 |
| JCR 分区 | Q1 |
| 发表年份 | 2015 |
| 被引次数 | 148 |
| 关键词 | 单细胞RNA测序, 贝叶斯分析, 基因表达异质性, 技术噪声, 生物变异 |
| 文献类型 | Journal Article, Research Support, Non-U.S. Gov't |
| ISSN | 1553-734X |
| 页码 | e1004333 |
| 期号 | 11(6) |
| 作者 | Catalina A Vallejos, John C Marioni, Sylvia Richardson |
一句话小结
本研究提出了一种名为BASiCS的贝叶斯层次模型,旨在解决单细胞mRNA测序中技术噪声对基因表达异质性识别的影响,通过估计细胞特异性标准化常数和分解表达计数的变异性,提供了一种直观的检测标准。实验结果表明,该方法在小鼠胚胎干细胞基因表达分析中有效,能够识别高低变异基因,具有重要的研究意义。
在麦伴科研 (maltsci.com) 搜索更多文献
单细胞RNA测序 · 贝叶斯分析 · 基因表达异质性 · 技术噪声 · 生物变异
摘要
单细胞mRNA测序能够揭示在表面上看似均质的细胞群体中基因表达水平的新的细胞间异质性。然而,这些实验容易受到高水平无法解释的技术噪声的影响,这给识别在研究的细胞群体中表现出真实异质性表达的基因带来了新的挑战。BASiCS(单细胞测序数据的贝叶斯分析)是一个集成的贝叶斯层次模型,其中: (i) 细胞特异性的标准化常数作为模型参数的一部分进行估计;(ii) 基于人工引入到每个被分析细胞裂解液中的标记基因量化技术变异性;(iii) 表达计数的总变异性被分解为技术成分和生物成分。BASiCS还为研究的细胞群体中的高(或低)变异基因提供了直观的检测标准。这通过与高(或低)生物细胞间方差贡献相关的尾部后验概率来形式化,这些量可以被用户轻松解释。我们使用小鼠胚胎干细胞的基因表达测量来演示我们的方法。交叉验证和在被分类为高(或低)变异基因中的基因本体类别的有意义富集支持了我们方法的有效性。
英文摘要
Single-cell mRNA sequencing can uncover novel cell-to-cell heterogeneity in gene expression levels in seemingly homogeneous populations of cells. However, these experiments are prone to high levels of unexplained technical noise, creating new challenges for identifying genes that show genuine heterogeneous expression within the population of cells under study. BASiCS (Bayesian Analysis of Single-Cell Sequencing data) is an integrated Bayesian hierarchical model where: (i) cell-specific normalisation constants are estimated as part of the model parameters, (ii) technical variability is quantified based on spike-in genes that are artificially introduced to each analysed cell's lysate and (iii) the total variability of the expression counts is decomposed into technical and biological components. BASiCS also provides an intuitive detection criterion for highly (or lowly) variable genes within the population of cells under study. This is formalised by means of tail posterior probabilities associated to high (or low) biological cell-to-cell variance contributions, quantities that can be easily interpreted by users. We demonstrate our method using gene expression measurements from mouse Embryonic Stem Cells. Cross-validation and meaningful enrichment of gene ontology categories within genes classified as highly (or lowly) variable supports the efficacy of our approach.
麦伴智能科研服务
主要研究问题
- BASiCS模型如何在处理技术噪声方面优于传统方法?
- 在使用BASiCS分析不同细胞类型的单细胞RNA测序数据时,有哪些具体的应用案例?
- BASiCS模型中,如何选择和验证用于估计技术变异性的假基因?
- 在什么情况下,BASiCS的高低变异基因检测标准可能会出现误判?
- BASiCS如何与其他单细胞数据分析工具(如Seurat或Scanpy)进行比较,尤其是在结果解释方面?
核心洞察
研究背景和目的
在单细胞测序数据分析中,模型参数的先验独立性假设为构建有效的贝叶斯模型提供了基础。研究的主要目的是探讨在缺乏可靠先验信息的情况下,如何使用不适当的非信息性先验进行模型构建,并确保后验分布的存在性和有效性。
主要方法/材料/实验设计
本研究采用了贝叶斯分析方法,特别关注于基因特定的表达率和模型参数的选择。主要方法如下:
模型假设:
- 假设所有模型参数之间是独立的。
- 采用不适当的非信息性先验: [ \pi(\mu_1, \ldots, \mu_{q_0}) \propto \prod_{i=1}^{q_0} \mu_i^{-1} ]
- 对其他参数采用适当的Gamma分布作为先验。
后验分布的存在性:
- 提出定理,指出每个生物基因至少在一个细胞中被表达(即存在正计数)是后验分布存在的充分条件。
数据分析:
- 使用模拟数据和真实数据集进行分析,评估超参数选择对后验推断的影响。
以下是技术路线的流程图:
关键结果和发现
- 使用不适当的非信息性先验能够简化模型构建,但存在导致后验推断无效的风险。
- 研究表明,超参数的选择对后验推断的影响不大,尤其是在使用小型数据集时。
- 定理的证明显示,只要每个基因在至少一个细胞中有表达,后验分布就会存在且有效。
主要结论/意义/创新性
本研究通过探讨非信息性先验在贝叶斯分析中的应用,提出了确保后验分布存在的条件。这一研究为单细胞测序数据分析提供了新的视角和方法论,有助于推动生物医学领域中复杂数据的分析与解读。
研究局限性和未来方向
- 局限性:本研究主要集中在特定的模型假设和先验选择,可能不适用于所有类型的生物数据。
- 未来方向:建议在不同类型的数据集上验证该方法的有效性,并探索更复杂的模型和先验选择,以提高推断的准确性和可靠性。
参考文献
- Computational and analytical challenges in single-cell transcriptomics. - Oliver Stegle;Sarah A Teichmann;John C Marioni - Nature reviews. Genetics (2015)
- Differentiating embryonic stem cells: GAPDH, but neither HPRT nor beta-tubulin is suitable as an internal standard for measuring RNA levels. - Christopher L Murphy;Julia M Polak - Tissue engineering (2002)
- Detecting differential gene expression with a semiparametric hierarchical mixture method. - Michael A Newton;Amine Noueiry;Deepayan Sarkar;Paul Ahlquist - Biostatistics (Oxford, England) (2004)
- A Bayesian approach to measurement error problems in epidemiology using conditional independence models. - S Richardson;W R Gilks - American journal of epidemiology (1993)
- An in situ hybridization-based screen for heterogeneously expressed genes in mouse ES cells. - Mark G Carter;Carole A Stagg;Geppino Falco;Toshiyuki Yoshikawa;Uwem C Bassey;Kazuhiro Aiba;Lioudmila V Sharova;Nabeebi Shaik;Minoru S H Ko - Gene expression patterns : GEP (2008)
- mRNA-Seq whole-transcriptome analysis of a single cell. - Fuchou Tang;Catalin Barbacioru;Yangzhou Wang;Ellen Nordman;Clarence Lee;Nanlan Xu;Xiaohui Wang;John Bodeau;Brian B Tuch;Asim Siddiqui;Kaiqin Lao;M Azim Surani - Nature methods (2009)
- Bayesian integrated modeling of expression data: a case study on RhoG. - Rashi Gupta;Dario Greco;Petri Auvinen;Elja Arjas - BMC bioinformatics (2010)
- Differential expression analysis for sequence count data. - Simon Anders;Wolfgang Huber - Genome biology (2010)
- Synthetic spike-in standards for RNA-seq experiments. - Lichun Jiang;Felix Schlesinger;Carrie A Davis;Yu Zhang;Renhua Li;Marc Salit;Thomas R Gingeras;Brian Oliver - Genome research (2011)
- Accounting for technical noise in single-cell RNA-seq experiments. - Philip Brennecke;Simon Anders;Jong Kyoung Kim;Aleksandra A Kołodziejczyk;Xiuwei Zhang;Valentina Proserpio;Bianka Baying;Vladimir Benes;Sarah A Teichmann;John C Marioni;Marcus G Heisler - Nature methods (2013)
引用本文的文献
- Design and computational analysis of single-cell RNA-sequencing experiments. - Rhonda Bacher;Christina Kendziorski - Genome biology (2016)
- Beyond comparisons of means: understanding changes in gene expression at the single-cell level. - Catalina A Vallejos;Sylvia Richardson;John C Marioni - Genome biology (2016)
- Reply to The contribution of cell cycle to heterogeneity in single-cell RNA-seq data. - Nature biotechnology (2016)
- Robust Inference of Cell-to-Cell Expression Variations from Single- and K-Cell Profiling. - Manikandan Narayanan;Andrew J Martins;John S Tsang - PLoS computational biology (2016)
- Identifying and removing the cell-cycle effect from single-cell RNA-Sequencing data. - Martin Barron;Jun Li - Scientific reports (2016)
- Single-Cell Transcriptomics Bioinformatics and Computational Challenges. - Olivier B Poirion;Xun Zhu;Travers Ching;Lana Garmire - Frontiers in genetics (2016)
- Revealing the vectors of cellular identity with single-cell genomics. - Allon Wagner;Aviv Regev;Nir Yosef - Nature biotechnology (2016)
- A step-by-step workflow for low-level analysis of single-cell RNA-seq data with Bioconductor. - Aaron T L Lun;Davis J McCarthy;John C Marioni - F1000Research (2016)
- Intrinsic transcriptional heterogeneity in B cells controls early class switching to IgE. - Yee Ling Wu;Michael J T Stubbington;Maria Daly;Sarah A Teichmann;Cristina Rada - The Journal of experimental medicine (2017)
- Batch effects and the effective design of single-cell gene expression studies. - Po-Yuan Tung;John D Blischak;Chiaowen Joyce Hsiao;David A Knowles;Jonathan E Burnett;Jonathan K Pritchard;Yoav Gilad - Scientific reports (2017)
... (138 更多 篇文献)
© 2025 MaltSci 麦伴科研 - 我们用人工智能技术重塑科研
