Skip to content

Disruptions of topological chromatin domains cause pathogenic rewiring of gene-enhancer interactions.

文献信息

DOI10.1016/j.cell.2015.04.004
PMID25959774
期刊Cell
影响因子42.5
JCR 分区Q1
发表年份2015
被引次数1116
关键词拓扑染色质域, 基因-增强子相互作用, CRISPR/Cas基因编辑
文献类型Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't, Research Support, U.S. Gov't, Non-P.H.S.
ISSN0092-8674
页码1012-1025
期号161(5)
作者Darío G Lupiáñez, Katerina Kraft, Verena Heinrich, Peter Krawitz, Francesco Brancati, Eva Klopocki, Denise Horn, Hülya Kayserili, John M Opitz, Renata Laxova, Fernando Santos-Simarro, Brigitte Gilbert-Dussardier, Lars Wittler, Marina Borschiwer, Stefan A Haas, Marco Osterwalder, Martin Franke, Bernd Timmermann, Jochen Hecht, Malte Spielmann, Axel Visel, Stefan Mundlos

一句话小结

本研究揭示了哺乳动物基因组中的拓扑相关域(TADs)在基因表达调控中的关键作用,指出TADs的破坏会导致远程调控结构的重塑,从而引发肢体畸形等病理表型。通过CRISPR/Cas基因组编辑技术,研究表明与CTCF相关的边界域的破坏会导致基因的异位表达,强调了在预测人类结构变异致病性时,特别是在非编码区域的重要性。

在麦伴科研 (maltsci.com) 搜索更多文献

拓扑染色质域 · 基因-增强子相互作用 · CRISPR/Cas基因编辑

摘要

哺乳动物基因组被组织成百万碱基规模的拓扑相关域(TADs)。我们展示了TADs的破坏如何重塑远程调控结构,并导致病理表型的出现。我们表明,不同的人类肢体畸形是由删除、倒位或重复导致的,这些改变影响了跨越TAD的WNT6/IHH/EPHA4/PAX3基因座的结构。通过CRISPR/Cas基因组编辑技术,我们生成了具有相应重排的小鼠。在小鼠的肢体组织和患者来源的成纤维细胞中,疾病相关的结构变化导致了启动子与非编码DNA之间的异位相互作用,并且通常与Epha4相关的一组肢体增强子相对于TAD边界的位置发生错位,从而驱动该基因座中另一个基因的异位肢体表达。这种重排仅在变异破坏了与CTCF相关的边界域时发生。我们的研究结果表明,TADs在通过基因组结构协调基因表达方面具有功能重要性,并指出了预测人类结构变异致病性标准,特别是在非编码区域的标准。

英文摘要

Mammalian genomes are organized into megabase-scale topologically associated domains (TADs). We demonstrate that disruption of TADs can rewire long-range regulatory architecture and result in pathogenic phenotypes. We show that distinct human limb malformations are caused by deletions, inversions, or duplications altering the structure of the TAD-spanning WNT6/IHH/EPHA4/PAX3 locus. Using CRISPR/Cas genome editing, we generated mice with corresponding rearrangements. Both in mouse limb tissue and patient-derived fibroblasts, disease-relevant structural changes cause ectopic interactions between promoters and non-coding DNA, and a cluster of limb enhancers normally associated with Epha4 is misplaced relative to TAD boundaries and drives ectopic limb expression of another gene in the locus. This rewiring occurred only if the variant disrupted a CTCF-associated boundary domain. Our results demonstrate the functional importance of TADs for orchestrating gene expression via genome architecture and indicate criteria for predicting the pathogenicity of human structural variants, particularly in non-coding regions of the human genome.

麦伴智能科研服务

智能阅读回答你对文献的任何问题,帮助理解文献中的复杂图表和公式
定位观点定位某个观点在文献中的蛛丝马迹
加入知识库完成数据提取,报告撰写等更多高级知识挖掘功能

主要研究问题

  1. 在研究中,如何确定特定的TAD结构变化与具体的疾病表型之间的因果关系?
  2. 除了WNT6/IHH/EPHA4/PAX3基因座外,还有哪些其他基因座可能受到TAD重排的影响,导致不同的发育异常?
  3. 在CRISPR/Cas基因编辑实验中,针对TAD的具体干预措施会对小鼠的发育过程产生哪些潜在的长期影响?
  4. TAD的功能失调是否可能在其他类型的疾病中发挥作用,比如癌症或神经退行性疾病?
  5. 如何利用这些研究结果来改进对人类结构变异的预测,特别是在非编码区域的变异中?

核心洞察

研究背景和目的

本研究旨在探讨拓扑染色质结构域(TADs)在基因-增强子相互作用中的作用,以及其在病理状态下的改变如何导致基因表达的异常。研究发现,结构变异(如缺失、倒位和重复)会影响CTCF相关的边界元素,导致TAD结构的破坏,从而引发病理性基因表达重编程。

主要方法/材料/实验设计

本研究采用了以下主要方法:

  1. 结构变异识别:通过全基因组测序和高分辨率的阵列比较基因组杂交(CGH)技术,识别与肢体畸形相关的结构变异。
  2. CRISPR/Cas基因组编辑:在小鼠胚胎干细胞中应用CRISPR/Cas9技术重建人类疾病相关的基因组重排,以生成相应的小鼠模型。
  3. 4C-seq技术:使用4C-seq技术分析小鼠和人类细胞中染色质的三维结构,研究不同结构变异对基因表达的影响。

以下是实验设计的流程图:

Mermaid diagram

关键结果和发现

  1. TAD结构的破坏:研究发现,结构变异会导致TAD边界的破坏,从而使增强子与非编码DNA之间产生异常相互作用,导致基因的误表达。
  2. 不同表型的关联:不同的结构变异(如缺失、倒位、重复)会导致相似的肢体畸形表型,表明不同类型的重排可以导致相同的功能性改变。
  3. 增强子-基因相互作用:通过4C-seq分析,发现误表达的基因(如Pax3、Wnt6、Ihh)与Epha4 TAD的增强子之间建立了新的相互作用。

主要结论/意义/创新性

本研究强调了TAD结构在基因表达调控中的重要性,并提出了一个框架来解释人类结构变异的致病机制。研究表明,结构变异通过影响TAD的完整性和边界功能,导致基因-增强子相互作用的重编程,进而引发病理性基因表达变化。这为理解人类遗传病的机制提供了新的视角,并为未来的诊断和治疗策略奠定了基础。

研究局限性和未来方向

尽管本研究提供了重要的见解,但仍存在一些局限性:

  1. 样本量限制:本研究主要集中于特定的肢体畸形案例,未来需要扩大样本量以验证发现的普遍性。
  2. 机制探索不足:对不同基因表达变化的具体机制尚需深入研究,以了解其在发育过程中的具体作用。

未来的研究方向可以包括:

  • 扩展到其他基因组区域和表型,以验证TAD结构在其他遗传病中的作用。
  • 进一步探索不同细胞类型和发育阶段中TAD的动态变化及其对基因表达的影响。

参考文献

  1. Regulation of Pax-3 expression in the dermomyotome and its role in muscle development. - M Goulding;A Lumsden;A J Paquette - Development (Cambridge, England) (1994)
  2. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. - Suhas S P Rao;Miriam H Huntley;Neva C Durand;Elena K Stamenova;Ivan D Bochkov;James T Robinson;Adrian L Sanborn;Ido Machol;Arina D Omer;Eric S Lander;Erez Lieberman Aiden - Cell (2014)
  3. Topology of mammalian developmental enhancers and their regulatory landscapes. - Wouter de Laat;Denis Duboule - Nature (2013)
  4. Structural variations, the regulatory landscape of the genome and their alteration in human disease. - Malte Spielmann;Stefan Mundlos - BioEssays : news and reviews in molecular, cellular and developmental biology (2013)
  5. A high-resolution map of the three-dimensional chromatin interactome in human cells. - Fulai Jin;Yan Li;Jesse R Dixon;Siddarth Selvaraj;Zhen Ye;Ah Young Lee;Chia-An Yen;Anthony D Schmitt;Celso A Espinoza;Bing Ren - Nature (2013)
  6. Deletions, Inversions, Duplications: Engineering of Structural Variants using CRISPR/Cas in Mice. - Katerina Kraft;Sinje Geuer;Anja J Will;Wing Lee Chan;Christina Paliou;Marina Borschiwer;Izabela Harabula;Lars Wittler;Martin Franke;Daniel M Ibrahim;Bjørt K Kragesteen;Malte Spielmann;Stefan Mundlos;Darío G Lupiáñez;Guillaume Andrey - Cell reports (2015)
  7. Deletions of chromosomal regulatory boundaries are associated with congenital disease. - Jonas Ibn-Salem;Sebastian Köhler;Michael I Love;Ho-Ryun Chung;Ni Huang;Matthew E Hurles;Melissa Haendel;Nicole L Washington;Damian Smedley;Christopher J Mungall;Suzanna E Lewis;Claus-Eric Ott;Sebastian Bauer;Paul N Schofield;Stefan Mundlos;Malte Spielmann;Peter N Robinson - Genome biology (2014)
  8. Impact of copy number variations (CNVs) on long-range gene regulation at the HoxD locus. - Thomas Montavon;Laurie Thevenet;Denis Duboule - Proceedings of the National Academy of Sciences of the United States of America (2012)
  9. Structural variation in the human genome and its role in disease. - Paweł Stankiewicz;James R Lupski - Annual review of medicine (2010)
  10. Chromatin state signatures associated with tissue-specific gene expression and enhancer activity in the embryonic limb. - Justin Cotney;Jing Leng;Sunghee Oh;Laura E DeMare;Steven K Reilly;Mark B Gerstein;James P Noonan - Genome research (2012)

引用本文的文献

  1. A CRISPR Connection between Chromatin Topology and Genetic Disorders. - Bing Ren;Jesse R Dixon - Cell (2015)
  2. Architectural proteins, transcription, and the three-dimensional organization of the genome. - Caelin Cubeñas-Potts;Victor G Corces - FEBS letters (2015)
  3. Genome organization: Disorder — from chromatin to limb development. - Bryony Jones - Nature reviews. Genetics (2015)
  4. Non-coding genetic variants in human disease. - Feng Zhang;James R Lupski - Human molecular genetics (2015)
  5. The oncogenic BRD4-NUT chromatin regulator drives aberrant transcription within large topological domains. - Artyom A Alekseyenko;Erica M Walsh;Xin Wang;Adlai R Grayson;Peter T Hsi;Peter V Kharchenko;Mitzi I Kuroda;Christopher A French - Genes & development (2015)
  6. An Overview of Genome Organization and How We Got There: from FISH to Hi-C. - James Fraser;Iain Williamson;Wendy A Bickmore;Josée Dostie - Microbiology and molecular biology reviews : MMBR (2015)
  7. Three Dimensional Organization of the Nucleus: adding DNA sequences to the big picture. - David M Gilbert;Peter Fraser - Genome biology (2015)
  8. Analysis methods for studying the 3D architecture of the genome. - Ferhat Ay;William S Noble - Genome biology (2015)
  9. Chromatin Insulators and Topological Domains: Adding New Dimensions to 3D Genome Architecture. - Navneet K Matharu;Sajad H Ahanger - Genes (2015)
  10. Structural and functional diversity of Topologically Associating Domains. - Job Dekker;Edith Heard - FEBS letters (2015)

... (1106 更多 篇文献)


© 2025 MaltSci 麦伴科研 - 我们用人工智能技术重塑科研