Appearance
A Robust CRISPR/Cas9 System for Convenient, High-Efficiency Multiplex Genome Editing in Monocot and Dicot Plants.
文献信息
| PMID | 25917172 |
|---|---|
| 期刊 | Molecular plant |
| 影响因子 | 24.1 |
| JCR 分区 | Q1 |
| 发表年份 | 2015 |
| 被引次数 | 954 |
| 关键词 | 拟南芥,CRISPR/Cas9,基因组编辑,水稻,序列特异性核酸酶 |
| 文献类型 | Journal Article, Research Support, Non-U.S. Gov't |
| ISSN | 1674-2052 |
| 页码 | 1274-84 |
| 期号 | 8(8) |
| 作者 | Xingliang Ma, Qunyu Zhang, Qinlong Zhu, Wei Liu, Yan Chen, Rong Qiu, Bin Wang, Zhongfang Yang, Heying Li, Yuru Lin, Yongyao Xie, Rongxin Shen, Shuifu Chen, Zhi Wang, Yuanling Chen, Jingxin Guo, Letian Chen, Xiucai Zhao, Zhicheng Dong, Yao-Guang Liu |
一句话小结
本研究开发了一种优化的CRISPR/Cas9载体系统,能够在单子叶和双子叶植物中高效实现多重基因组编辑,成功在水稻中编辑了46个靶点,突变率达到85.4%。该系统为植物多基因功能研究和遗传改良提供了强大的工具,推动了基因组编辑技术在农业中的应用。
在麦伴科研 (maltsci.com) 搜索更多文献
拟南芥 · CRISPR/Cas9 · 基因组编辑 · 水稻 · 序列特异性核酸酶
摘要
CRISPR/Cas9基因组靶向系统已被应用于多种物种。然而,大多数已报告的植物CRISPR/Cas9系统仅能修改一个或少数几个靶点。在此,我们报告了一种强大的CRISPR/Cas9载体系统,利用经过植物密码子优化的Cas9基因,便于在单子叶植物和双子叶植物中进行高效的多重基因组编辑。我们设计了基于PCR的程序,快速生成多个sgRNA表达盒,这些表达盒可以通过Golden Gate连接或Gibson组装在一次克隆中组装到二元CRISPR/Cas9载体中。利用该系统,我们在水稻中编辑了46个靶点,平均突变率达到85.4%,大多数为双等位基因和纯合状态。我们推测大约16%的水稻纯合突变是通过非同源末端连接机制然后经过同源重组修复产生的。我们还在拟南芥T1植物中获得了均一的双等位基因、杂合、纯合和嵌合突变。水稻和拟南芥中的靶向突变均具有遗传性。我们提供了在T0水稻和T1拟南芥植物中,通过同时靶向多个(多达八个)基因家族成员、多个生物合成途径中的基因或单个基因中的多个位点,导致功能丧失基因突变的示例。该系统为研究植物中多个基因及基因家族的功能提供了一个多功能工具箱,适用于基础研究和遗传改良。
英文摘要
CRISPR/Cas9 genome targeting systems have been applied to a variety of species. However, most CRISPR/Cas9 systems reported for plants can only modify one or a few target sites. Here, we report a robust CRISPR/Cas9 vector system, utilizing a plant codon optimized Cas9 gene, for convenient and high-efficiency multiplex genome editing in monocot and dicot plants. We designed PCR-based procedures to rapidly generate multiple sgRNA expression cassettes, which can be assembled into the binary CRISPR/Cas9 vectors in one round of cloning by Golden Gate ligation or Gibson Assembly. With this system, we edited 46 target sites in rice with an average 85.4% rate of mutation, mostly in biallelic and homozygous status. We reasoned that about 16% of the homozygous mutations in rice were generated through the non-homologous end-joining mechanism followed by homologous recombination-based repair. We also obtained uniform biallelic, heterozygous, homozygous, and chimeric mutations in Arabidopsis T1 plants. The targeted mutations in both rice and Arabidopsis were heritable. We provide examples of loss-of-function gene mutations in T0 rice and T1 Arabidopsis plants by simultaneous targeting of multiple (up to eight) members of a gene family, multiple genes in a biosynthetic pathway, or multiple sites in a single gene. This system has provided a versatile toolbox for studying functions of multiple genes and gene families in plants for basic research and genetic improvement.
麦伴智能科研服务
主要研究问题
- 这种CRISPR/Cas9系统在不同植物物种中的应用效果如何?
- 如何评估这种系统在提高作物遗传改良效率方面的潜力?
- 除了水稻和阿拉伯芥,这种系统是否适用于其他重要农作物?
- 在使用这种系统时,是否存在特定的挑战或限制,特别是在多基因编辑方面?
- 该系统如何影响植物基因组的稳定性和遗传多样性?
核心洞察
研究背景和目的
CRISPR/Cas9基因组编辑系统已广泛应用于多种物种,但目前大多数植物的CRISPR/Cas9系统仅能修改一到几个目标位点。为了提升基因组编辑的效率和便捷性,本研究旨在开发一种强大的CRISPR/Cas9载体系统,能够在单子叶植物(如水稻)和双子叶植物(如阿拉伯芥)中实现高效的多重基因组编辑。主要方法和发现
研究者们设计了基于PCR的程序,快速生成多个sgRNA表达盒,这些表达盒可以通过Golden Gate连接或Gibson组装在一次克隆中合并到二元CRISPR/Cas9载体中。采用该系统,研究团队在水稻中编辑了46个目标位点,平均突变率达到85.4%,大多数为双等位基因和纯合子状态。此外,研究表明约16%的水稻纯合突变是通过非同源末端连接机制后再通过同源重组修复生成的。同时,在阿拉伯芥T1植物中获得了均匀的双等位基因、杂合子、纯合子和嵌合突变。研究还提供了在T0水稻和T1阿拉伯芥植物中,通过同时靶向多个(最多八个)基因家族成员、多个生物合成途径中的基因或单个基因中的多个位点实现的失活基因突变的实例。核心结论
研究表明,所开发的CRISPR/Cas9系统具有高效率和多重编辑能力,能够在植物中实现针对多个基因及其家族成员的精准编辑,且这些突变具备遗传稳定性。这一系统显著提高了植物基因组编辑的灵活性和便利性,尤其在批量编辑和功能研究中表现出色。研究意义和影响
该研究为植物基因组编辑提供了一个多功能工具箱,推动了基础研究和遗传改良的进展。通过实现对多个基因的同时编辑,研究人员能够更深入地探讨基因的功能及其在生物合成途径中的作用。这一系统不仅提升了对植物基因组的操控能力,还有助于加速作物改良、提高作物抗逆性和产量,具有广泛的应用前景和经济价值。
引用本文的文献
- Efficient CRISPR/Cas9-mediated Targeted Mutagenesis in Populus in the First Generation. - Di Fan;Tingting Liu;Chaofeng Li;Bo Jiao;Shuang Li;Yishu Hou;Keming Luo - Scientific reports (2015)
- Egg cell-specific promoter-controlled CRISPR/Cas9 efficiently generates homozygous mutants for multiple target genes in Arabidopsis in a single generation. - Zhi-Ping Wang;Hui-Li Xing;Li Dong;Hai-Yan Zhang;Chun-Yan Han;Xue-Chen Wang;Qi-Jun Chen - Genome biology (2015)
- Use of designer nucleases for targeted gene and genome editing in plants. - Donald P Weeks;Martin H Spalding;Bing Yang - Plant biotechnology journal (2016)
- A CRISPR/Cas9 Toolbox for Multiplexed Plant Genome Editing and Transcriptional Regulation. - Levi G Lowder;Dengwei Zhang;Nicholas J Baltes;Joseph W Paul;Xu Tang;Xuelian Zheng;Daniel F Voytas;Tzung-Fu Hsieh;Yong Zhang;Yiping Qi - Plant physiology (2015)
- CLE Peptide Signaling and Crosstalk with Phytohormones and Environmental Stimuli. - Guodong Wang;Guohua Zhang;Mengyao Wu - Frontiers in plant science (2015)
- Revolutionizing plant biology: multiple ways of genome engineering by CRISPR/Cas. - Simon Schiml;Holger Puchta - Plant methods (2016)
- Exploiting the CRISPR/Cas9 System for Targeted Genome Mutagenesis in Petunia. - Bin Zhang;Xia Yang;Chunping Yang;Mingyang Li;Yulong Guo - Scientific reports (2016)
- A modular toolbox for gRNA-Cas9 genome engineering in plants based on the GoldenBraid standard. - Marta Vazquez-Vilar;Joan Miquel Bernabé-Orts;Asun Fernandez-Del-Carmen;Pello Ziarsolo;Jose Blanca;Antonio Granell;Diego Orzaez - Plant methods (2016)
- Selection of highly efficient sgRNAs for CRISPR/Cas9-based plant genome editing. - Gang Liang;Huimin Zhang;Dengji Lou;Diqiu Yu - Scientific reports (2016)
- Effective screen of CRISPR/Cas9-induced mutants in rice by single-strand conformation polymorphism. - Xuelian Zheng;Shixin Yang;Dengwei Zhang;Zhaohui Zhong;Xu Tang;Kejun Deng;Jianping Zhou;Yiping Qi;Yong Zhang - Plant cell reports (2016)
... (944 更多 篇文献)
© 2025 MaltSci 麦伴科研 - 我们用人工智能技术重塑科研
