Skip to content

CRISPR-Cas9 knockin mice for genome editing and cancer modeling.

文献信息

PMID25263330
期刊Cell
影响因子42.5
JCR 分区Q1
发表年份2014
被引次数1070
关键词CRISPR-Cas9, 基因组编辑, 癌症建模, 小鼠模型, 基因突变
文献类型Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't, Research Support, U.S. Gov't, Non-P.H.S.
ISSN0092-8674
页码440-55
期号159(2)
作者Randall J Platt, Sidi Chen, Yang Zhou, Michael J Yim, Lukasz Swiech, Hannah R Kempton, James E Dahlman, Oren Parnas, Thomas M Eisenhaure, Marko Jovanovic, Daniel B Graham, Siddharth Jhunjhunwala, Matthias Heidenreich, Ramnik J Xavier, Robert Langer, Daniel G Anderson, Nir Hacohen, Aviv Regev, Guoping Feng, Phillip A Sharp, Feng Zhang

一句话小结

本研究建立了一种依赖Cre的Cas9敲入小鼠模型,成功在体内实现了对肺腺癌中KRAS、p53和LKB1基因的突变模拟,展示了CRISPR-Cas9技术在基因组编辑和疾病建模中的广泛应用潜力。这一模型为深入研究遗传元素功能及其在肿瘤发生中的作用提供了重要工具。

在麦伴科研 (maltsci.com) 搜索更多文献

CRISPR-Cas9 · 基因组编辑 · 癌症建模 · 小鼠模型 · 基因突变

摘要

CRISPR-Cas9是一种多功能的基因组编辑技术,用于研究遗传元素的功能。为了广泛推动Cas9在体内的应用,我们建立了一种依赖Cre的Cas9敲入小鼠模型。我们在神经元、免疫细胞和内皮细胞中使用腺相关病毒(AAV)、慢病毒或颗粒介导的引导RNA传递,展示了体内和体外的基因组编辑。利用这些小鼠,我们同时模拟了肺腺癌中三种显著突变基因KRAS、p53和LKB1的动态。在肺部投递单一AAV载体产生了p53和Lkb1的功能缺失突变,以及通过同源重组修复介导的Kras(G12D)突变,导致了腺癌病理的大规模肿瘤。综上所述,这些结果表明Cas9小鼠为广泛的生物学和疾病建模应用提供了强大的支持。

英文摘要

CRISPR-Cas9 is a versatile genome editing technology for studying the functions of genetic elements. To broadly enable the application of Cas9 in vivo, we established a Cre-dependent Cas9 knockin mouse. We demonstrated in vivo as well as ex vivo genome editing using adeno-associated virus (AAV)-, lentivirus-, or particle-mediated delivery of guide RNA in neurons, immune cells, and endothelial cells. Using these mice, we simultaneously modeled the dynamics of KRAS, p53, and LKB1, the top three significantly mutated genes in lung adenocarcinoma. Delivery of a single AAV vector in the lung generated loss-of-function mutations in p53 and Lkb1, as well as homology-directed repair-mediated Kras(G12D) mutations, leading to macroscopic tumors of adenocarcinoma pathology. Together, these results suggest that Cas9 mice empower a wide range of biological and disease modeling applications.

麦伴智能科研服务

智能阅读回答你对文献的任何问题,帮助理解文献中的复杂图表和公式
定位观点定位某个观点在文献中的蛛丝马迹
加入知识库完成数据提取,报告撰写等更多高级知识挖掘功能

主要研究问题

  1. CRISPR-Cas9技术在其他类型癌症建模中的应用有哪些潜力?
  2. 如何优化CRISPR-Cas9 knockin小鼠的基因编辑效率和特异性?
  3. 在使用AAV和慢病毒递送gRNA时,有哪些关键因素影响编辑效果?
  4. 该研究中使用的基因突变模型如何帮助理解肿瘤微环境的变化?
  5. CRISPR-Cas9 knockin小鼠在基础生物学研究中的其他应用领域是什么?

核心洞察

研究背景和目的

CRISPR-Cas9是一种多功能基因组编辑技术,广泛应用于研究基因元件的功能。为了促进Cas9在体内的应用,研究者们建立了一种Cre依赖的Cas9敲入小鼠模型,以便于对基因组进行编辑并探索与肺腺癌相关的基因突变。

主要方法/材料/实验设计

研究采用了Cre依赖的Cas9敲入小鼠模型,结合不同的载体递送系统(如腺相关病毒AAV、慢病毒和颗粒介导)来进行基因组编辑。具体实验设计如下:

Mermaid diagram

关键结果和发现

  • 使用AAV载体在小鼠肺部递送后,成功生成了p53和Lkb1的功能丧失突变,以及通过同源重组修复机制产生的Kras(G12D)突变。
  • 这些突变导致了显著的腺癌病理特征的宏观肿瘤形成。
  • 研究表明,Cas9小鼠模型能够有效地模拟肺腺癌中KRAS、p53和LKB1的动态变化。

主要结论/意义/创新性

该研究展示了Cre依赖的Cas9小鼠模型在基因组编辑及疾病建模中的广泛应用潜力,尤其是在肺腺癌的研究中。这一技术不仅提高了对特定基因突变的研究能力,也为癌症生物学提供了新的实验平台,具有重要的临床和基础研究意义。

研究局限性和未来方向

  • 研究局限性:

    • 目前的模型主要集中在肺腺癌,未来需要扩展到其他类型的癌症及不同的生物系统。
    • 对于不同基因的编辑效率和特异性仍需进一步验证。
  • 未来方向:

    • 继续优化Cas9递送系统,以提高基因编辑的效率和特异性。
    • 研究其他突变基因在不同类型癌症中的作用,进一步拓展Cas9小鼠模型的应用范围。

参考文献

  1. High frequency of homologous recombination in mammalian cells between endogenous and introduced SV40 genomes. - M Jasin;J de Villiers;F Weber;W Schaffner - Cell (1985)
  2. Genome-scale CRISPR-Cas9 knockout screening in human cells. - Ophir Shalem;Neville E Sanjana;Ella Hartenian;Xi Shi;David A Scott;Tarjei Mikkelson;Dirk Heckl;Benjamin L Ebert;David E Root;John G Doench;Feng Zhang - Science (New York, N.Y.) (2014)
  3. DNA targeting specificity of RNA-guided Cas9 nucleases. - Patrick D Hsu;David A Scott;Joshua A Weinstein;F Ann Ran;Silvana Konermann;Vineeta Agarwala;Yinqing Li;Eli J Fine;Xuebing Wu;Ophir Shalem;Thomas J Cradick;Luciano A Marraffini;Gang Bao;Feng Zhang - Nature biotechnology (2013)
  4. Conditional control of gene expression in the mouse. - M Lewandoski - Nature reviews. Genetics (2001)
  5. Systematic discovery of TLR signaling components delineates viral-sensing circuits. - Nicolas Chevrier;Philipp Mertins;Maxim N Artyomov;Alex K Shalek;Matteo Iannacone;Mark F Ciaccio;Irit Gat-Viks;Elena Tonti;Marciela M DeGrace;Karl R Clauser;Manuel Garber;Thomas M Eisenhaure;Nir Yosef;Jacob Robinson;Amy Sutton;Mette S Andersen;David E Root;Ulrich von Andrian;Richard B Jones;Hongkun Park;Steven A Carr;Aviv Regev;Ido Amit;Nir Hacohen - Cell (2011)
  6. The AAV9 receptor and its modification to improve in vivo lung gene transfer in mice. - Christie L Bell;Luk H Vandenberghe;Peter Bell;Maria P Limberis;Guang-Ping Gao;Kim Van Vliet;Mavis Agbandje-McKenna;James M Wilson - The Journal of clinical investigation (2011)
  7. Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases. - Marina Bibikova;Mary Golic;Kent G Golic;Dana Carroll - Genetics (2002)
  8. Improved vectors and genome-wide libraries for CRISPR screening. - Neville E Sanjana;Ophir Shalem;Feng Zhang - Nature methods (2014)
  9. Transgenic expression of Cre recombinase from the tyrosine hydroxylase locus. - Jonas Lindeberg;Dmitry Usoskin;Henrik Bengtsson;Anna Gustafsson;Annika Kylberg;Stine Söderström;Ted Ebendal - Genesis (New York, N.Y. : 2000) (2004)
  10. Lung cancer. - Roy S Herbst;John V Heymach;Scott M Lippman - The New England journal of medicine (2008)

引用本文的文献

  1. In vivo interrogation of gene function in the mammalian brain using CRISPR-Cas9. - Lukasz Swiech;Matthias Heidenreich;Abhishek Banerjee;Naomi Habib;Yinqing Li;John Trombetta;Mriganka Sur;Feng Zhang - Nature biotechnology (2015)
  2. Computational and molecular tools for scalable rAAV-mediated genome editing. - Ivaylo Stoimenov;Muhammad Akhtar Ali;Tatjana Pandzic;Tobias Sjöblom - Nucleic acids research (2015)
  3. Efficient CRISPR-rAAV engineering of endogenous genes to study protein function by allele-specific RNAi. - Manuel Kaulich;Yeon J Lee;Peter Lönn;Aaron D Springer;Bryan R Meade;Steven F Dowdy - Nucleic acids research (2015)
  4. Regenerative medicine: targeted genome editing in vivo. - Lixia Wang;Jun Wu;Weiwei Fang;Guang-Hui Liu;Juan Carlos Izpisua Belmonte - Cell research (2015)
  5. CRISPR-engineered mosaicism rapidly reveals that loss of Kcnj13 function in mice mimics human disease phenotypes. - Hua Zhong;Yiyun Chen;Yumei Li;Rui Chen;Graeme Mardon - Scientific reports (2015)
  6. Inducible in vivo genome editing with CRISPR-Cas9. - Lukas E Dow;Jonathan Fisher;Kevin P O'Rourke;Ashlesha Muley;Edward R Kastenhuber;Geulah Livshits;Darjus F Tschaharganeh;Nicholas D Socci;Scott W Lowe - Nature biotechnology (2015)
  7. Modeling colorectal cancer using CRISPR-Cas9-mediated engineering of human intestinal organoids. - Mami Matano;Shoichi Date;Mariko Shimokawa;Ai Takano;Masayuki Fujii;Yuki Ohta;Toshiaki Watanabe;Takanori Kanai;Toshiro Sato - Nature medicine (2015)
  8. Genome editing strategies: potential tools for eradicating HIV-1/AIDS. - Kamel Khalili;Rafal Kaminski;Jennifer Gordon;Laura Cosentino;Wenhui Hu - Journal of neurovirology (2015)
  9. Dynamic interplay between bone and multiple myeloma: emerging roles of the osteoblast. - Michaela R Reagan;Lucy Liaw;Clifford J Rosen;Irene M Ghobrial - Bone (2015)
  10. The utility of rodent models of autism spectrum disorders. - Maria T Lázaro;Peyman Golshani - Current opinion in neurology (2015)

... (1060 更多 篇文献)


© 2025 MaltSci 麦伴科研 - 我们用人工智能技术重塑科研