Skip to content

The Synthetic Biology Open Language (SBOL) provides a community standard for communicating designs in synthetic biology.

文献信息

DOI10.1038/nbt.2891
PMID24911500
期刊Nature biotechnology
影响因子41.7
JCR 分区Q1
发表年份2014
被引次数89
关键词合成生物学开放语言, 数据标准, 设计交流
文献类型Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't, Research Support, U.S. Gov't, Non-P.H.S.
ISSN1087-0156
页码545-50
期号32(6)
作者Michal Galdzicki, Kevin P Clancy, Ernst Oberortner, Matthew Pocock, Jacqueline Y Quinn, Cesar A Rodriguez, Nicholas Roehner, Mandy L Wilson, Laura Adam, J Christopher Anderson, Bryan A Bartley, Jacob Beal, Deepak Chandran, Joanna Chen, Douglas Densmore, Drew Endy, Raik Grünberg, Jennifer Hallinan, Nathan J Hillson, Jeffrey D Johnson, Allan Kuchinsky, Matthew Lux, Goksel Misirli, Jean Peccoud, Hector A Plahar, Evren Sirin, Guy-Bart Stan, Alan Villalobos, Anil Wipat, John H Gennari, Chris J Myers, Herbert M Sauro

一句话小结

本文提出了合成生物学开放语言(SBOL)作为一种数据标准,旨在促进合成生物学设计在研究和工程实践中的有效交换。SBOL通过社区驱动的格式化表示,已在多个学术和工业合作伙伴之间成功实现信息共享,推动了合成生物学的进一步发展。

在麦伴科研 (maltsci.com) 搜索更多文献

合成生物学开放语言 · 数据标准 · 设计交流

摘要

以前验证过的设计的再利用对于合成生物学从研究学科向工程实践的演变至关重要。本文介绍了合成生物学开放语言(SBOL),这是一个提议的数据标准,用于在合成生物学社区内交换设计。SBOL以社区驱动的、正式化的格式表示合成生物学设计,以便在软件工具、研究小组和商业服务提供商之间进行交换。SBOL开发者小组已经将SBOL实现为XML/RDF序列化格式,并提供软件库和规范文档,以帮助开发者在自己的软件中实现SBOL。我们描述了一些早期的成功案例,包括展示SBOL在学术和工业合作伙伴之间的多个软件工具和存储库之间进行信息交换的实用性。作为一个社区驱动的标准,SBOL将在合成生物学不断发展的过程中进行更新,以提供针对合成生物学工作流程不同方面的具体功能。

英文摘要

The re-use of previously validated designs is critical to the evolution of synthetic biology from a research discipline to an engineering practice. Here we describe the Synthetic Biology Open Language (SBOL), a proposed data standard for exchanging designs within the synthetic biology community. SBOL represents synthetic biology designs in a community-driven, formalized format for exchange between software tools, research groups and commercial service providers. The SBOL Developers Group has implemented SBOL as an XML/RDF serialization and provides software libraries and specification documentation to help developers implement SBOL in their own software. We describe early successes, including a demonstration of the utility of SBOL for information exchange between several different software tools and repositories from both academic and industrial partners. As a community-driven standard, SBOL will be updated as synthetic biology evolves to provide specific capabilities for different aspects of the synthetic biology workflow.

麦伴智能科研服务

智能阅读回答你对文献的任何问题,帮助理解文献中的复杂图表和公式
定位观点定位某个观点在文献中的蛛丝马迹
加入知识库完成数据提取,报告撰写等更多高级知识挖掘功能

主要研究问题

  1. SBOL如何促进不同研究小组之间的设计交流和协作?
  2. 在SBOL的实施过程中,开发者面临了哪些主要挑战和解决方案?
  3. 如何评估SBOL在实际应用中的有效性和影响力?
  4. SBOL标准在商业服务提供者中如何被接受和应用?
  5. 随着合成生物学的发展,SBOL可能会有哪些未来的扩展和改进方向?

核心洞察

1. 研究背景和目的

合成生物学作为一个新兴的研究领域,正逐步向工程实践转型。在这一转型过程中,设计的重用性显得尤为重要,因为它能够加速创新并减少重复劳动。为了促进合成生物学设计的交流与共享,本文提出了合成生物学开放语言(SBOL),旨在为合成生物学社区提供一种标准的数据格式,以便于不同软件工具、研究团队以及商业服务提供商之间的信息交换。

2. 主要方法和发现

SBOL通过一种社区驱动的、正式化的格式对合成生物学设计进行表示,采用XML/RDF序列化方式。SBOL开发者小组为开发人员提供了相应的软件库和规范文档,以帮助他们在自己的软件中实现SBOL标准。研究中展示了SBOL在多个软件工具和资源库之间进行信息交换的初步成功案例,这些工具和资源库来自于学术界和工业界,验证了SBOL的实用性和有效性。

3. 核心结论

SBOL作为一种社区标准,不仅为合成生物学设计提供了一个统一的交流语言,还促进了研究者和开发者之间的协作。随着合成生物学的不断发展,SBOL将持续更新,以适应不同合成生物学工作流程的具体需求。这种灵活性和适应性将进一步推动合成生物学的进步,并助力其转型为成熟的工程学科。

4. 研究意义和影响

SBOL的提出和实施对合成生物学领域具有重要的意义。首先,它为设计的重用和信息共享奠定了基础,有助于减少重复研究,提高研究效率。其次,SBOL促进了学术界与工业界之间的合作,推动了技术的转移和应用。此外,作为一个动态更新的标准,SBOL能够适应合成生物学的快速发展,为未来的研究和工程实践提供支持。这一标准的建立将有助于形成合成生物学的规范化、系统化发展,提高其在更广泛领域的应用潜力。

参考文献

  1. TinkerCell: modular CAD tool for synthetic biology. - Deepak Chandran;Frank T Bergmann;Herbert M Sauro - Journal of biological engineering (2009)
  2. CellML: its future, present and past. - Catherine M Lloyd;Matt D B Halstead;Poul F Nielsen - Progress in biophysics and molecular biology (2004)
  3. Improved tools for biological sequence comparison. - W R Pearson;D J Lipman - Proceedings of the National Academy of Sciences of the United States of America (1988)
  4. Biomolecular computing systems: principles, progress and potential. - Yaakov Benenson - Nature reviews. Genetics (2012)
  5. Metabolic engineering: past and future. - Benjamin M Woolston;Steven Edgar;Gregory Stephanopoulos - Annual review of chemical and biomolecular engineering (2013)
  6. Synthetic biology: understanding biological design from synthetic circuits. - Shankar Mukherji;Alexander van Oudenaarden - Nature reviews. Genetics (2009)
  7. Design, implementation and practice of JBEI-ICE: an open source biological part registry platform and tools. - Timothy S Ham;Zinovii Dmytriv;Hector Plahar;Joanna Chen;Nathan J Hillson;Jay D Keasling - Nucleic acids research (2012)
  8. Construction of a genetic toggle switch in Escherichia coli. - T S Gardner;C R Cantor;J J Collins - Nature (2000)
  9. A survey of enabling technologies in synthetic biology. - Linda J Kahl;Drew Endy - Journal of biological engineering (2013)
  10. Standard biological parts knowledgebase. - Michal Galdzicki;Cesar Rodriguez;Deepak Chandran;Herbert M Sauro;John H Gennari - PloS one (2011)

引用本文的文献

  1. Parts & pools: a framework for modular design of synthetic gene circuits. - Mario Andrea Marchisio - Frontiers in bioengineering and biotechnology (2014)
  2. SEVA 2.0: an update of the Standard European Vector Architecture for de-/re-construction of bacterial functionalities. - Esteban Martínez-García;Tomás Aparicio;Angel Goñi-Moreno;Sofía Fraile;Víctor de Lorenzo - Nucleic acids research (2015)
  3. BioModels: ten-year anniversary. - Vijayalakshmi Chelliah;Nick Juty;Ishan Ajmera;Raza Ali;Marine Dumousseau;Mihai Glont;Michael Hucka;Gaël Jalowicki;Sarah Keating;Vincent Knight-Schrijver;Audald Lloret-Villas;Kedar Nath Natarajan;Jean-Baptiste Pettit;Nicolas Rodriguez;Michael Schubert;Sarala M Wimalaratne;Yangyang Zhao;Henning Hermjakob;Nicolas Le Novère;Camille Laibe - Nucleic acids research (2015)
  4. Community-driven development for computational biology at Sprints, Hackathons and Codefests. - Steffen Möller;Enis Afgan;Michael Banck;Raoul J P Bonnal;Timothy Booth;John Chilton;Peter J A Cock;Markus Gumbel;Nomi Harris;Richard Holland;Matúš Kalaš;László Kaján;Eri Kibukawa;David R Powel;Pjotr Prins;Jacqueline Quinn;Olivier Sallou;Francesco Strozzi;Torsten Seemann;Clare Sloggett;Stian Soiland-Reyes;William Spooner;Sascha Steinbiss;Andreas Tille;Anthony J Travis;Roman Guimera;Toshiaki Katayama;Brad A Chapman - BMC bioinformatics (2014)
  5. COMBINE archive and OMEX format: one file to share all information to reproduce a modeling project. - Frank T Bergmann;Richard Adams;Stuart Moodie;Jonathan Cooper;Mihai Glont;Martin Golebiewski;Michael Hucka;Camille Laibe;Andrew K Miller;David P Nickerson;Brett G Olivier;Nicolas Rodriguez;Herbert M Sauro;Martin Scharm;Stian Soiland-Reyes;Dagmar Waltemath;Florent Yvon;Nicolas Le Novère - BMC bioinformatics (2014)
  6. Synthetic biology for the directed evolution of protein biocatalysts: navigating sequence space intelligently. - Andrew Currin;Neil Swainston;Philip J Day;Douglas B Kell - Chemical Society reviews (2015)
  7. Developments in the tools and methodologies of synthetic biology. - Richard Kelwick;James T MacDonald;Alexander J Webb;Paul Freemont - Frontiers in bioengineering and biotechnology (2014)
  8. Improving collaboration by standardization efforts in systems biology. - Andreas Dräger;Bernhard Ø Palsson - Frontiers in bioengineering and biotechnology (2014)
  9. Intellectual property issues and synthetic biology standards. - Jorge L Contreras;Arti K Rai;Andrew W Torrance - Nature biotechnology (2015)
  10. Reply to Intellectual property issues and synthetic biology standards. - Michal Galdzicki;Linda J Kahl;Drew Endy;Herbert M Sauro - Nature biotechnology (2015)

... (79 更多 篇文献)


© 2025 MaltSci 麦伴科研 - 我们用人工智能技术重塑科研