Appearance
CRISPR-Cas systems for editing, regulating and targeting genomes.
文献信息
| DOI | 10.1038/nbt.2842 |
|---|---|
| PMID | 24584096 |
| 期刊 | Nature biotechnology |
| 影响因子 | 41.7 |
| JCR 分区 | Q1 |
| 发表年份 | 2014 |
| 被引次数 | 1402 |
| 关键词 | CRISPR技术, 基因编辑, Cas9, 基因表达调控, 基因组靶向 |
| 文献类型 | Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't, Research Support, U.S. Gov't, Non-P.H.S., Review |
| ISSN | 1087-0156 |
| 页码 | 347-55 |
| 期号 | 32(4) |
| 作者 | Jeffry D Sander, J Keith Joung |
一句话小结
基因组编辑技术,特别是CRISPR-Cas9系统的出现,极大地推动了生物医学研究,使得科学家能够高效、精准地修改内源基因和调控基因表达。尽管该系统的全基因组特异性尚需进一步探讨,但其在生物研究和新型分子疗法开发中的潜力无疑将对人类疾病的治疗产生深远影响。
在麦伴科研 (maltsci.com) 搜索更多文献
CRISPR技术 · 基因编辑 · Cas9 · 基因表达调控 · 基因组靶向
摘要
基因组编辑技术通过工程化核酸酶的靶向应用,已经迅速从一种小众技术发展成为许多生物研究者广泛使用的主流方法。这种广泛采用主要得益于集群规律间隔短回文重复序列(CRISPR)技术的出现,这是一种重要的新方法,可以生成具有可定制特异性的RNA导向核酸酶,如Cas9。通过这些核酸酶介导的基因组编辑,已经能够快速、轻松且高效地修改多种生物医学重要细胞类型中的内源基因,以及在传统上难以进行遗传操作的生物体中进行修改。此外,CRISPR-Cas9系统的一个改进版本已经被开发出来,可以招募异源域以调控内源基因表达或在活细胞中标记特定基因组位点。尽管CRISPR-Cas9系统的全基因组特异性尚待全面定义,但这些系统在执行靶向、高效的基因组序列和基因表达改变方面的能力无疑将改变生物研究,推动新型分子疗法的发展,以应对人类疾病。
英文摘要
Targeted genome editing using engineered nucleases has rapidly gone from being a niche technology to a mainstream method used by many biological researchers. This widespread adoption has been largely fueled by the emergence of the clustered, regularly interspaced, short palindromic repeat (CRISPR) technology, an important new approach for generating RNA-guided nucleases, such as Cas9, with customizable specificities. Genome editing mediated by these nucleases has been used to rapidly, easily and efficiently modify endogenous genes in a wide variety of biomedically important cell types and in organisms that have traditionally been challenging to manipulate genetically. Furthermore, a modified version of the CRISPR-Cas9 system has been developed to recruit heterologous domains that can regulate endogenous gene expression or label specific genomic loci in living cells. Although the genome-wide specificities of CRISPR-Cas9 systems remain to be fully defined, the power of these systems to perform targeted, highly efficient alterations of genome sequence and gene expression will undoubtedly transform biological research and spur the development of novel molecular therapeutics for human disease.
麦伴智能科研服务
主要研究问题
- CRISPR技术在不同生物体中的应用有哪些具体实例?
- 除了CRISPR-Cas9,还有哪些基因编辑技术在生物医学研究中逐渐流行?
- CRISPR-Cas系统在调控基因表达方面的最新进展是什么?
- 在CRISPR技术的应用中,如何确保编辑的特异性和安全性?
- 未来CRISPR技术可能对基因治疗和个性化医学产生哪些影响?
核心洞察
研究背景和目的
CRISPR-Cas系统是一种强大的基因组编辑工具,近年来在生物医学研究中得到了广泛应用。该技术的快速发展使得科学家能够高效、精准地修改基因组,为治疗遗传疾病和进行生物研究提供了新的可能性。本文综述了CRISPR-Cas系统的工作原理、应用、优势及其局限性。
主要方法/材料/实验设计
CRISPR-Cas系统主要依赖于RNA引导的核酸酶(如Cas9)进行特定DNA序列的切割。其基本流程如下:
- 设计引导RNA(gRNA):根据目标DNA序列设计gRNA,gRNA与目标DNA通过碱基配对结合。
- 导入Cas9和gRNA到细胞:使用电转、转染或病毒载体等方法将Cas9和gRNA导入细胞。
- 形成DNA双链断裂(DSB):Cas9在gRNA的引导下切割目标DNA,形成DSB。
- 修复机制:
- 非同源末端连接(NHEJ):可导致插入/缺失突变,常用于基因敲除。
- 同源重组修复(HDR):可用于精准的基因替换或插入。
- 基因组编辑完成:通过筛选确认编辑结果。
关键结果和发现
- CRISPR-Cas系统能够在多种细胞类型和生物体中有效地进行基因组编辑。
- 通过改变gRNA的序列,可以实现对不同DNA靶点的精确定位。
- 尽管CRISPR技术具有高效性,但仍存在潜在的脱靶效应,即在非目标位点产生意外的基因组突变。
主要结论/意义/创新性
CRISPR-Cas系统的出现极大地推动了基因组编辑技术的发展,简化了基因组操作的复杂性。其高效性和灵活性使得科学家能够在几乎所有生物体中进行基因编辑,具有广泛的应用前景,尤其是在治疗遗传疾病、农业改良和基础生物研究方面。
研究局限性和未来方向
- 脱靶效应:当前技术仍无法完全预测和控制脱靶效应,限制了其在临床应用中的安全性。
- 改进特异性:未来研究需集中在提高CRISPR-Cas系统的靶向特异性和降低脱靶效应的策略上,例如使用配对的Cas9nickase。
- 递送方法:针对不同细胞类型的有效递送系统仍需优化,以提高CRISPR-Cas组件的传递效率和表达。
- HDR与NHEJ的平衡:在利用HDR进行精准编辑时,需减少NHEJ引起的突变,以提高正确编辑的比例。
总之,CRISPR-Cas系统为基因组编辑提供了革命性的工具,尽管存在挑战,但其潜力巨大,未来有望在基础研究和临床应用中发挥重要作用。
参考文献
- Genome engineering of Drosophila with the CRISPR RNA-guided Cas9 nuclease. - Scott J Gratz;Alexander M Cummings;Jennifer N Nguyen;Danielle C Hamm;Laura K Donohue;Melissa M Harrison;Jill Wildonger;Kate M O'Connor-Giles - Genetics (2013)
- Targeted gene knockout by direct delivery of zinc-finger nuclease proteins. - Thomas Gaj;Jing Guo;Yoshio Kato;Shannon J Sirk;Carlos F Barbas - Nature methods (2012)
- Locus-specific editing of histone modifications at endogenous enhancers. - Eric M Mendenhall;Kaylyn E Williamson;Deepak Reyon;James Y Zou;Oren Ram;J Keith Joung;Bradley E Bernstein - Nature biotechnology (2013)
- Efficient construction of sequence-specific TAL effectors for modulating mammalian transcription. - Feng Zhang;Le Cong;Simona Lodato;Sriram Kosuri;George M Church;Paola Arlotta - Nature biotechnology (2011)
- Heritable custom genomic modifications in Caenorhabditis elegans via a CRISPR-Cas9 system. - Yonatan B Tzur;Ari E Friedland;Saravanapriah Nadarajan;George M Church;John A Calarco;Monica P Colaiácovo - Genetics (2013)
- Targeted DNA demethylation and activation of endogenous genes using programmable TALE-TET1 fusion proteins. - Morgan L Maeder;James F Angstman;Marcy E Richardson;Samantha J Linder;Vincent M Cascio;Shengdar Q Tsai;Quan H Ho;Jeffry D Sander;Deepak Reyon;Bradley E Bernstein;Joseph F Costello;Miles F Wilkinson;J Keith Joung - Nature biotechnology (2013)
- High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity. - Vikram Pattanayak;Steven Lin;John P Guilinger;Enbo Ma;Jennifer A Doudna;David R Liu - Nature biotechnology (2013)
- Standardized reagents and protocols for engineering zinc finger nucleases by modular assembly. - David A Wright;Stacey Thibodeau-Beganny;Jeffry D Sander;Ronnie J Winfrey;Andrew S Hirsh;Magdalena Eichtinger;Fengli Fu;Matthew H Porteus;Drena Dobbs;Daniel F Voytas;J Keith Joung - Nature protocols (2006)
- Genome engineering with zinc-finger nucleases. - Dana Carroll - Genetics (2011)
- Efficient genome editing in zebrafish using a CRISPR-Cas system. - Woong Y Hwang;Yanfang Fu;Deepak Reyon;Morgan L Maeder;Shengdar Q Tsai;Jeffry D Sander;Randall T Peterson;J-R Joanna Yeh;J Keith Joung - Nature biotechnology (2013)
引用本文的文献
- Gene editing at CRISPR speed. - Monya Baker - Nature biotechnology (2014)
- Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing. - Shengdar Q Tsai;Nicolas Wyvekens;Cyd Khayter;Jennifer A Foden;Vishal Thapar;Deepak Reyon;Mathew J Goodwin;Martin J Aryee;J Keith Joung - Nature biotechnology (2014)
- Multiplexed and programmable regulation of gene networks with an integrated RNA and CRISPR/Cas toolkit in human cells. - Lior Nissim;Samuel D Perli;Alexandra Fridkin;Pablo Perez-Pinera;Timothy K Lu - Molecular cell (2014)
- Targeted genome editing in human repopulating haematopoietic stem cells. - Pietro Genovese;Giulia Schiroli;Giulia Escobar;Tiziano Di Tomaso;Claudia Firrito;Andrea Calabria;Davide Moi;Roberta Mazzieri;Chiara Bonini;Michael C Holmes;Philip D Gregory;Mirjam van der Burg;Bernhard Gentner;Eugenio Montini;Angelo Lombardo;Luigi Naldini - Nature (2014)
- Efficient mutagenesis by Cas9 protein-mediated oligonucleotide insertion and large-scale assessment of single-guide RNAs. - James A Gagnon;Eivind Valen;Summer B Thyme;Peng Huang;Laila Akhmetova;Laila Ahkmetova;Andrea Pauli;Tessa G Montague;Steven Zimmerman;Constance Richter;Alexander F Schier - PloS one (2014)
- Computational and experimental approaches to reveal the effects of single nucleotide polymorphisms with respect to disease diagnostics. - Tugba G Kucukkal;Ye Yang;Susan C Chapman;Weiguo Cao;Emil Alexov - International journal of molecular sciences (2014)
- Development and applications of CRISPR-Cas9 for genome engineering. - Patrick D Hsu;Eric S Lander;Feng Zhang - Cell (2014)
- Key applications of plant metabolic engineering. - Warren Lau;Michael A Fischbach;Anne Osbourn;Elizabeth S Sattely - PLoS biology (2014)
- The prospect of molecular therapy for Angelman syndrome and other monogenic neurologic disorders. - Barbara J Bailus;David J Segal - BMC neuroscience (2014)
- Multiplex genome engineering in human cells using all-in-one CRISPR/Cas9 vector system. - Tetsushi Sakuma;Ayami Nishikawa;Satoshi Kume;Kazuaki Chayama;Takashi Yamamoto - Scientific reports (2014)
... (1392 更多 篇文献)
© 2025 MaltSci 麦伴科研 - 我们用人工智能技术重塑科研
