Skip to content

Genetic screens in human cells using the CRISPR-Cas9 system.

文献信息

DOI10.1126/science.1246981
PMID24336569
期刊Science (New York, N.Y.)
影响因子45.8
JCR 分区Q1
发表年份2014
被引次数1552
关键词CRISPR-Cas9系统, 基因筛选, 人类细胞, sgRNA库, 基因组编辑
文献类型Evaluation Study, Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't, Research Support, U.S. Gov't, Non-P.H.S.
ISSN0036-8075
页码80-4
期号343(6166)
作者Tim Wang, Jenny J Wei, David M Sabatini, Eric S Lander

一句话小结

本研究开发了一种基于CRISPR-Cas9系统的高效失活筛选方法,通过整合大规模sgRNA文库在两种人类细胞系中进行筛选,成功识别了与DNA修复和细胞周期相关的关键基因。该方法的研究意义在于为哺乳动物细胞的遗传分析提供了一个强大的工具,能够加速基因功能的研究和新药靶点的发现。

在麦伴科研 (maltsci.com) 搜索更多文献

CRISPR-Cas9系统 · 基因筛选 · 人类细胞 · sgRNA库 · 基因组编辑

摘要

细菌的规律间隔短回文重复序列(CRISPR)-Cas9系统为基因组编辑提供了极大的工具扩展,使得快速生成具有修饰等位基因的同源细胞系和小鼠成为可能。在这里,我们描述了一种适用于正向和负向选择的 pooled 失活筛选方法,该方法使用了基因组规模的慢病毒单导RNA(sgRNA)文库。sgRNA 表达盒被稳定地整合到基因组中,从而使复杂的突变体库能够通过大规模平行测序进行追踪。我们使用包含73,000个sgRNA的文库生成了敲除集合,并在两个人类细胞系中进行了筛选。针对核苷酸类似物6-硫嘌呤的抗性筛选识别了所有预期的DNA错配修复途径成员,而针对DNA拓扑异构酶II(TOP2A)毒药依托泊苷的筛选则如预期地识别了TOP2A,以及细胞周期依赖性激酶6(CDK6)。针对必需基因的负向筛选识别了与基本过程对应的大量基因集。最后,我们展示了sgRNA的效率与特定序列基序相关,从而能够预测更有效的sgRNA。总之,这些结果确立了Cas9/sgRNA筛选作为哺乳动物细胞系统遗传分析的强大工具。

英文摘要

The bacterial clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 system for genome editing has greatly expanded the toolbox for mammalian genetics, enabling the rapid generation of isogenic cell lines and mice with modified alleles. Here, we describe a pooled, loss-of-function genetic screening approach suitable for both positive and negative selection that uses a genome-scale lentiviral single-guide RNA (sgRNA) library. sgRNA expression cassettes were stably integrated into the genome, which enabled a complex mutant pool to be tracked by massively parallel sequencing. We used a library containing 73,000 sgRNAs to generate knockout collections and performed screens in two human cell lines. A screen for resistance to the nucleotide analog 6-thioguanine identified all expected members of the DNA mismatch repair pathway, whereas another for the DNA topoisomerase II (TOP2A) poison etoposide identified TOP2A, as expected, and also cyclin-dependent kinase 6, CDK6. A negative selection screen for essential genes identified numerous gene sets corresponding to fundamental processes. Last, we show that sgRNA efficiency is associated with specific sequence motifs, enabling the prediction of more effective sgRNAs. Collectively, these results establish Cas9/sgRNA screens as a powerful tool for systematic genetic analysis in mammalian cells.

麦伴智能科研服务

智能阅读回答你对文献的任何问题,帮助理解文献中的复杂图表和公式
定位观点定位某个观点在文献中的蛛丝马迹
加入知识库完成数据提取,报告撰写等更多高级知识挖掘功能

主要研究问题

  1. 在使用CRISPR-Cas9系统进行基因筛选时,如何选择合适的sgRNA库以确保筛选的有效性?
  2. 进行正向和负向选择的基因筛选时,如何评估筛选结果的可靠性和重复性?
  3. 在不同的人类细胞系中,CRISPR-Cas9系统的基因编辑效率是否存在显著差异?如果有,这种差异可能由哪些因素引起?
  4. 在研究DNA错配修复途径时,除了6-thioguanine,还有哪些其他化合物可以用于筛选相关基因?
  5. 如何利用sgRNA效率与特定序列基序的关联,来优化CRISPR-Cas9介导的基因编辑实验?

核心洞察

研究背景和目的

CRISPR-Cas9系统作为一种强大的基因组编辑工具,近年来在哺乳动物遗传学研究中得到了广泛应用。传统的基因筛选方法在哺乳动物细胞中效率较低,难以同时失活两个等位基因,因此本研究旨在开发一种基于CRISPR-Cas9的高通量筛选方法,以实现对人类细胞中基因功能的系统性分析。

主要方法/材料/实验设计

本研究采用了一种基于CRISPR-Cas9的 pooled loss-of-function 筛选方法,使用一个包含73,000个sgRNA的基因组规模的慢病毒sgRNA库。sgRNA表达盒稳定整合入基因组中,能够通过高通量测序跟踪复杂的突变体池。实验流程如下:

Mermaid diagram
  1. sgRNA库设计:设计了一个包含73,151个sgRNA的库,针对7114个基因及100个非靶向对照。
  2. 细胞筛选:使用近单倍体的人类KBM7细胞和HL60细胞进行筛选,分析对化疗药物如6-thioguanine和etoposide的耐受性。
  3. 数据分析:通过深度测序分析sgRNA条形码的丰度变化,识别对细胞存活和增殖至关重要的基因。

关键结果和发现

  1. DNA错配修复途径:在6-TG处理下,预期的DNA错配修复基因(如MSH2、MSH6等)在细胞中显著富集。
  2. etoposide耐受性筛选:筛选出TOP2A和CDK6等基因,这些基因在化疗药物诱导的细胞死亡中发挥关键作用。
  3. sgRNA效能分析:发现sgRNA的效能与特定序列动机相关,为预测更有效的sgRNA提供了依据。

主要结论/意义/创新性

本研究成功建立了一种基于CRISPR-Cas9的高通量基因筛选方法,能够在哺乳动物细胞中系统性地识别与细胞增殖和存活相关的基因。这一方法具有以下优势:

  • 能够在DNA水平上完全失活目标基因,适用于研究需要完全基因功能丧失的表型。
  • 高效的sgRNA设计和筛选策略,显著提高了筛选的灵敏度和特异性。

研究局限性和未来方向

  1. 局限性:研究主要集中在增殖相关的表型,尚未探讨其他生物学现象的适用性。
  2. 未来方向:未来可以扩展该方法的应用范围,结合不同的sgRNA库,深入研究基因在各种生物过程中的功能,并优化sgRNA设计以提高其效能和特异性。

参考文献

  1. High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity. - Vikram Pattanayak;Steven Lin;John P Guilinger;Enbo Ma;Jennifer A Doudna;David R Liu - Nature biotechnology (2013)
  2. Efficient genome editing in zebrafish using a CRISPR-Cas system. - Woong Y Hwang;Yanfang Fu;Deepak Reyon;Morgan L Maeder;Shengdar Q Tsai;Jeffry D Sander;Randall T Peterson;J-R Joanna Yeh;J Keith Joung - Nature biotechnology (2013)
  3. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. - Haoyi Wang;Hui Yang;Chikdu S Shivalila;Meelad M Dawlaty;Albert W Cheng;Feng Zhang;Rudolf Jaenisch - Cell (2013)
  4. Eukaryotic DNA mismatch repair. - R D Kolodner;G T Marsischky - Current opinion in genetics & development (1999)
  5. Topoisomerase levels determine chemotherapy response in vitro and in vivo. - Darren J Burgess;Jason Doles;Lars Zender;Wen Xue;Beicong Ma;W Richard McCombie;Gregory J Hannon;Scott W Lowe;Michael T Hemann - Proceedings of the National Academy of Sciences of the United States of America (2008)
  6. A lentiviral RNAi library for human and mouse genes applied to an arrayed viral high-content screen. - Jason Moffat;Dorre A Grueneberg;Xiaoping Yang;So Young Kim;Angela M Kloepfer;Gregory Hinkle;Bruno Piqani;Thomas M Eisenhaure;Biao Luo;Jennifer K Grenier;Anne E Carpenter;Shi Yin Foo;Sheila A Stewart;Brent R Stockwell;Nir Hacohen;William C Hahn;Eric S Lander;David M Sabatini;David E Root - Cell (2006)
  7. Mismatch repair genes identified using genetic screens in Blm-deficient embryonic stem cells. - Ge Guo;Wei Wang;Allan Bradley - Nature (2004)
  8. A loss-of-function RNA interference screen for molecular targets in cancer. - Vu N Ngo;R Eric Davis;Laurence Lamy;Xin Yu;Hong Zhao;Georg Lenz;Lloyd T Lam;Sandeep Dave;Liming Yang;John Powell;Louis M Staudt - Nature (2006)
  9. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. - Martin Jinek;Krzysztof Chylinski;Ines Fonfara;Michael Hauer;Jennifer A Doudna;Emmanuelle Charpentier - Science (New York, N.Y.) (2012)
  10. Haploid genetic screens in human cells identify host factors used by pathogens. - Jan E Carette;Carla P Guimaraes;Malini Varadarajan;Annie S Park;Irene Wuethrich;Alzbeta Godarova;Maciej Kotecki;Brent H Cochran;Eric Spooner;Hidde L Ploegh;Thijn R Brummelkamp - Science (New York, N.Y.) (2009)

引用本文的文献

  1. Progress in genomics according to bingo: 2013 edition. - Konrad J Karczewski - Genome biology (2013)
  2. Cas9-based tools for targeted genome editing and transcriptional control. - Tao Xu;Yongchao Li;Joy D Van Nostrand;Zhili He;Jizhong Zhou - Applied and environmental microbiology (2014)
  3. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. - Yanfang Fu;Jeffry D Sander;Deepak Reyon;Vincent M Cascio;J Keith Joung - Nature biotechnology (2014)
  4. Dissecting mammalian immunity through mutation. - Owen M Siggs - Immunology and cell biology (2014)
  5. Crystal structure of Cas9 in complex with guide RNA and target DNA. - Hiroshi Nishimasu;F Ann Ran;Patrick D Hsu;Silvana Konermann;Soraya I Shehata;Naoshi Dohmae;Ryuichiro Ishitani;Feng Zhang;Osamu Nureki - Cell (2014)
  6. Bacterial cellular engineering by genome editing and gene silencing. - Nobutaka Nakashima;Kentaro Miyazaki - International journal of molecular sciences (2014)
  7. CRISPR-based technologies: prokaryotic defense weapons repurposed. - Rebecca M Terns;Michael P Terns - Trends in genetics : TIG (2014)
  8. CRISPR-Cas systems for editing, regulating and targeting genomes. - Jeffry D Sander;J Keith Joung - Nature biotechnology (2014)
  9. When a virus is not a parasite: the beneficial effects of prophages on bacterial fitness. - Joseph Bondy-Denomy;Alan R Davidson - Journal of microbiology (Seoul, Korea) (2014)
  10. CRISPR-Cas system: a powerful tool for genome engineering. - Liang Liu;Xiu-Duo Fan - Plant molecular biology (2014)

... (1542 更多 篇文献)


© 2025 MaltSci 麦伴科研 - 我们用人工智能技术重塑科研