Skip to content

Genome engineering using the CRISPR-Cas9 system.

文献信息

DOI10.1038/nprot.2013.143
PMID24157548
期刊Nature protocols
影响因子16.0
JCR 分区Q1
发表年份2013
被引次数6330
关键词基因组工程, CRISPR-Cas9, 基因编辑, 非同源末端连接, 同源重组修复
文献类型Journal Article, Research Support, N.I.H., Extramural
ISSN1750-2799
页码2281-2308
期号8(11)
作者F Ann Ran, Patrick D Hsu, Jason Wright, Vineeta Agarwala, David A Scott, Feng Zhang

一句话小结

本研究开发了一套工具,利用RNA引导的Cas9核酸酶在哺乳动物细胞中实现高效的基因组编辑,支持非同源末端连接和同源定向修复,同时提出了一种双切割策略以减少脱靶效应。该方法的快速性和精准性为基因组工程及后续功能研究提供了重要的实验指导,具有广泛的应用前景。

在麦伴科研 (maltsci.com) 搜索更多文献

基因组工程 · CRISPR-Cas9 · 基因编辑 · 非同源末端连接 · 同源重组修复

摘要

靶向核酸酶是以高精度介导基因组改变的强大工具。来自微生物簇状规律间隔短回文重复序列(CRISPR)适应性免疫系统的RNA引导Cas9核酸酶,可以通过简单指定其引导RNA中的20个核苷酸靶向序列,促进真核细胞中高效的基因组工程。在此,我们描述了一套工具,用于在哺乳动物细胞中通过非同源末端连接(NHEJ)或同源定向修复(HDR)进行Cas9介导的基因组编辑,以及用于后续功能研究的修饰细胞系的生成。为了最小化脱靶切割,我们进一步描述了一种使用配对引导RNA的Cas9切割酶突变体的双切割策略。该协议提供了实验性得出的靶点选择、切割效率评估和脱靶活性分析的指导方针。从靶点设计开始,基因修饰可以在短至1-2周内实现,修饰后的克隆细胞系可在2-3周内获得。

英文摘要

Targeted nucleases are powerful tools for mediating genome alteration with high precision. The RNA-guided Cas9 nuclease from the microbial clustered regularly interspaced short palindromic repeats (CRISPR) adaptive immune system can be used to facilitate efficient genome engineering in eukaryotic cells by simply specifying a 20-nt targeting sequence within its guide RNA. Here we describe a set of tools for Cas9-mediated genome editing via nonhomologous end joining (NHEJ) or homology-directed repair (HDR) in mammalian cells, as well as generation of modified cell lines for downstream functional studies. To minimize off-target cleavage, we further describe a double-nicking strategy using the Cas9 nickase mutant with paired guide RNAs. This protocol provides experimentally derived guidelines for the selection of target sites, evaluation of cleavage efficiency and analysis of off-target activity. Beginning with target design, gene modifications can be achieved within as little as 1-2 weeks, and modified clonal cell lines can be derived within 2-3 weeks.

麦伴智能科研服务

智能阅读回答你对文献的任何问题,帮助理解文献中的复杂图表和公式
定位观点定位某个观点在文献中的蛛丝马迹
加入知识库完成数据提取,报告撰写等更多高级知识挖掘功能

主要研究问题

  1. CRISPR-Cas9系统在不同类型的细胞中应用的成功案例有哪些?
  2. 除了CRISPR-Cas9,是否还有其他基因编辑技术可以实现类似的精确度?
  3. 在基因编辑过程中,如何评估和优化目标位点的选择?
  4. CRISPR-Cas9技术在治疗遗传疾病中的潜在应用和挑战是什么?
  5. 使用CRISPR-Cas9系统进行基因组编辑时,如何有效减少脱靶效应的影响?

核心洞察

研究背景和目的

CRISPR-Cas9系统是一种强大的基因组工程工具,能够高效、精准地进行基因组编辑。该研究旨在详细描述利用CRISPR-Cas9系统进行基因组编辑的工具和方法,特别是在哺乳动物细胞中的应用,包括基因敲除和基因修饰。

主要方法/材料/实验设计

该研究采用了CRISPR-Cas9系统,主要步骤如下:

  1. 目标设计

    • 使用在线CRISPR设计工具选择20个核苷酸的目标序列,确保其后有PAM序列(5'-NGG)。
  2. sgRNA构建

    • 通过PCR扩增sgRNA表达载体,或使用磷酸化和退火的寡核苷酸构建sgRNA。
  3. Cas9表达载体构建

    • 将sgRNA插入到pSpCas9载体中,生成pSpCas9(sgRNA)表达载体。
  4. 转染

    • 将构建好的pSpCas9(sgRNA)和修复模板(如ssODN或质粒)转染到HEK 293FT细胞或HUES9细胞中。
  5. 筛选和克隆

    • 通过FACS或稀释法筛选转染细胞,扩增单克隆细胞。
  6. 功能验证

    • 使用SURVEYOR酶实验或PCR检测基因组编辑效率,评估目标位点的编辑效果。
Mermaid diagram

关键结果和发现

  1. 通过CRISPR-Cas9系统,成功在HEK 293FT细胞中实现了对多个基因(如DYRK1A和GRIN2B)的高效编辑,编辑效率达到了65-68%。
  2. 采用双重切割策略(使用Cas9nickase)能够降低非特异性突变的发生,提高基因组编辑的特异性。
  3. 在HUES9细胞中使用Cas9nickase时未能检测到同源重组,可能与细胞类型的修复机制差异有关。

主要结论/意义/创新性

本研究提供了一套系统的CRISPR-Cas9基因组编辑方法,强调了目标设计、sgRNA构建和转染步骤的优化。这些方法的创新性在于:

  • 提供了详细的实验步骤和策略,以实现高效的基因组编辑。
  • 介绍了双重切割策略以提高编辑的特异性,降低非特异性突变的风险。

研究局限性和未来方向

  • 局限性:CRISPR-Cas9系统在某些细胞类型中的效率可能不一致,特别是在干细胞和特定组织细胞中。
  • 未来方向:进一步研究CRISPR系统的优化,探索其他CRISPR变体(如Cas12和Cas13)的应用潜力,及其在不同细胞类型和生物体中的表现。

通过这些研究,CRISPR-Cas9系统将为基因组编辑、疾病模型构建和治疗提供更为广泛的应用前景。

参考文献

  1. Genome engineering of Drosophila with the CRISPR RNA-guided Cas9 nuclease. - Scott J Gratz;Alexander M Cummings;Jennifer N Nguyen;Danielle C Hamm;Laura K Donohue;Melissa M Harrison;Jill Wildonger;Kate M O'Connor-Giles - Genetics (2013)
  2. Expanding small RNA interference. - Thomas Tuschl - Nature biotechnology (2002)
  3. A ligation-independent cloning technique for high-throughput assembly of transcription activator–like effector genes. - Jonathan L Schmid-Burgk;Tobias Schmidt;Vera Kaiser;Klara Höning;Veit Hornung - Nature biotechnology (2013)
  4. Optimizing promoters for recombinant adeno-associated virus-mediated gene expression in the peripheral and central nervous system using self-complementary vectors. - Steven J Gray;Stacey B Foti;Joel W Schwartz;Lavanya Bachaboina;Bonnie Taylor-Blake;Jennifer Coleman;Michael D Ehlers;Mark J Zylka;Thomas J McCown;R Jude Samulski - Human gene therapy (2011)
  5. CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. - Luciano A Marraffini;Erik J Sontheimer - Science (New York, N.Y.) (2008)
  6. Efficient construction of sequence-specific TAL effectors for modulating mammalian transcription. - Feng Zhang;Le Cong;Simona Lodato;Sriram Kosuri;George M Church;Paola Arlotta - Nature biotechnology (2011)
  7. Generation of isogenic pluripotent stem cells differing exclusively at two early onset Parkinson point mutations. - Frank Soldner;Josée Laganière;Albert W Cheng;Dirk Hockemeyer;Qing Gao;Raaji Alagappan;Vikram Khurana;Lawrence I Golbe;Richard H Myers;Susan Lindquist;Lei Zhang;Dmitry Guschin;Lauren K Fong;B Joseph Vu;Xiangdong Meng;Fyodor D Urnov;Edward J Rebar;Philip D Gregory;H Steve Zhang;Rudolf Jaenisch - Cell (2011)
  8. A protocol for constructing gene targeting vectors: generating knockout mice for the cadherin family and beyond. - Sen Wu;Guoxin Ying;Qiang Wu;Mario R Capecchi - Nature protocols (2008)
  9. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. - Yanfang Fu;Jennifer A Foden;Cyd Khayter;Morgan L Maeder;Deepak Reyon;J Keith Joung;Jeffry D Sander - Nature biotechnology (2013)
  10. RNA-guided human genome engineering via Cas9. - Prashant Mali;Luhan Yang;Kevin M Esvelt;John Aach;Marc Guell;James E DiCarlo;Julie E Norville;George M Church - Science (New York, N.Y.) (2013)

引用本文的文献

  1. Human genome editing as a tool to establish causality. - Fyodor D Urnov - Proceedings of the National Academy of Sciences of the United States of America (2014)
  2. Genetically encoded fluorescent biosensors for live-cell visualization of protein phosphorylation. - Laurel Oldach;Jin Zhang - Chemistry & biology (2014)
  3. IgH class switching exploits a general property of two DNA breaks to be joined in cis over long chromosomal distances. - Monica Gostissa;Bjoern Schwer;Amelia Chang;Junchao Dong;Robin M Meyers;Gregory T Marecki;Vivian W Choi;Roberto Chiarle;Ali A Zarrin;Frederick W Alt - Proceedings of the National Academy of Sciences of the United States of America (2014)
  4. CRISPR-Cas systems for editing, regulating and targeting genomes. - Jeffry D Sander;J Keith Joung - Nature biotechnology (2014)
  5. Enterococcus infection biology: lessons from invertebrate host models. - Grace J Yuen;Frederick M Ausubel - Journal of microbiology (Seoul, Korea) (2014)
  6. CRISPR-Cas system: a powerful tool for genome engineering. - Liang Liu;Xiu-Duo Fan - Plant molecular biology (2014)
  7. Designer microbes for biosynthesis. - Maureen B Quin;Claudia Schmidt-Dannert - Current opinion in biotechnology (2014)
  8. iPS cell technologies: significance and applications to CNS regeneration and disease. - Hideyuki Okano;Shinya Yamanaka - Molecular brain (2014)
  9. Adenovirus-mediated efficient gene transfer into cultured three-dimensional organoids. - Ning Wang;Hongyu Zhang;Bing-Qiang Zhang;Wei Liu;Zhonglin Zhang;Min Qiao;Hongmei Zhang;Fang Deng;Ningning Wu;Xian Chen;Sheng Wen;Junhui Zhang;Zhan Liao;Qian Zhang;Zhengjian Yan;Liangjun Yin;Jixing Ye;Youlin Deng;Hue H Luu;Rex C Haydon;Houjie Liang;Tong-Chuan He - PloS one (2014)
  10. Targeted mutagenesis using CRISPR/Cas system in medaka. - Satoshi Ansai;Masato Kinoshita - Biology open (2014)

... (6320 更多 篇文献)


© 2025 MaltSci 麦伴科研 - 我们用人工智能技术重塑科研