Skip to content

Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity.

文献信息

PMID23992846
期刊Cell
影响因子42.5
JCR 分区Q1
发表年份2013
被引次数1753
关键词CRISPR Cas9, 基因组编辑, 特异性, 双链断裂, 引导RNA
文献类型Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't, Research Support, U.S. Gov't, Non-P.H.S.
ISSN0092-8674
页码1380-9
期号154(6)
作者F Ann Ran, Patrick D Hsu, Chie-Yu Lin, Jonathan S Gootenberg, Silvana Konermann, Alexandro E Trevino, David A Scott, Azusa Inoue, Shogo Matoba, Yi Zhang, Feng Zhang

一句话小结

本研究提出了一种新的CRISPR-Cas9基因组编辑策略,通过将Cas9切口酶突变体与成对引导RNA结合,显著降低了脱靶突变的发生,降低幅度可达50到1500倍,同时在小鼠受精卵中实现高效基因敲除。这一方法不仅提高了基因组编辑的特异性,还为需要高保真度的基因组编辑应用提供了新的可能性。

在麦伴科研 (maltsci.com) 搜索更多文献

CRISPR Cas9 · 基因组编辑 · 特异性 · 双链断裂 · 引导RNA

摘要

靶向基因组编辑技术已经使广泛的研究和医疗应用成为可能。微生物CRISPR-Cas系统中的Cas9核酸酶通过一个20个核苷酸的引导序列靶向特定的基因组位点,该引导序列可以容忍与DNA靶标的某些不匹配,从而促进不必要的脱靶突变。在这里,我们描述了一种将Cas9切口酶突变体与成对引导RNA结合的方案,以引入靶向双链断裂。由于基因组中的单个切口以高保真度修复,因此需要通过适当偏移的引导RNA进行同时切口,以实现双链断裂,并扩展靶向切割的特定识别碱基数量。我们证明,使用成对切口可以在细胞系中将脱靶活性降低50到1500倍,并且能够在小鼠受精卵中促进基因敲除,而不牺牲靶向切割效率。这一多功能策略使得需要高特异性的多种基因组编辑应用成为可能。

英文摘要

Targeted genome editing technologies have enabled a broad range of research and medical applications. The Cas9 nuclease from the microbial CRISPR-Cas system is targeted to specific genomic loci by a 20 nt guide sequence, which can tolerate certain mismatches to the DNA target and thereby promote undesired off-target mutagenesis. Here, we describe an approach that combines a Cas9 nickase mutant with paired guide RNAs to introduce targeted double-strand breaks. Because individual nicks in the genome are repaired with high fidelity, simultaneous nicking via appropriately offset guide RNAs is required for double-stranded breaks and extends the number of specifically recognized bases for target cleavage. We demonstrate that using paired nicking can reduce off-target activity by 50- to 1,500-fold in cell lines and to facilitate gene knockout in mouse zygotes without sacrificing on-target cleavage efficiency. This versatile strategy enables a wide variety of genome editing applications that require high specificity.

麦伴智能科研服务

智能阅读回答你对文献的任何问题,帮助理解文献中的复杂图表和公式
定位观点定位某个观点在文献中的蛛丝马迹
加入知识库完成数据提取,报告撰写等更多高级知识挖掘功能

主要研究问题

  1. 在使用双重切割的CRISPR Cas9技术时,如何选择合适的引导RNA以最大化特异性?
  2. 双重切割技术在不同类型细胞中的应用效果是否存在差异?如果有,具体表现如何?
  3. 针对双重切割技术的优化,是否有其他潜在的方法可以进一步减少脱靶效应?
  4. 除了基因敲除,双重切割技术在基因插入或修复方面的应用前景如何?
  5. 在小鼠胚胎中应用双重切割技术时,有哪些技术挑战和解决方案?

核心洞察

研究背景和目的

随着基因组编辑技术的发展,CRISPR-Cas9系统已成为生物医学研究和临床应用中的重要工具。然而,Cas9核酸酶在靶向特定基因组位点时,可能会导致不必要的脱靶突变。因此,本研究旨在提出一种新方法,通过结合Cas9切口酶突变体和成对的引导RNA,来提高基因组编辑的特异性,减少脱靶效应。

主要方法/材料/实验设计

本研究采用了成对引导RNA与Cas9切口酶的组合,具体实验设计如下:

Mermaid diagram
  1. Cas9核酸酶选择:选择合适的Cas9切口酶突变体。
  2. 设计成对引导RNA:设计两条具有适当偏移的引导RNA,以确保在靶位点引发双链断裂。
  3. 转染细胞系:将构建的Cas9和引导RNA转染到细胞系中。
  4. 检测靶向双链断裂:评估双链断裂的效率。
  5. 评估脱靶效应:通过高通量测序等技术测定脱靶突变率。
  6. 小鼠胚胎基因敲除:在小鼠胚胎中应用该方法实现基因敲除。

关键结果和发现

  • 成对引导RNA与Cas9切口酶的结合可以显著降低脱靶活性,减少50到1500倍。
  • 在细胞系中,成功实现了高效的靶向双链断裂,同时保持了靶向切割的效率。
  • 在小鼠胚胎中,该方法有效地促进了基因敲除。
结果具体数据
脱靶活性降低50-1500倍
靶向切割效率高效
小鼠基因敲除成功率显著提高

主要结论/意义/创新性

本研究提出的成对引导RNA与Cas9切口酶的组合策略,为基因组编辑提供了一种高特异性的解决方案,显著降低了脱靶效应。该方法不仅适用于基础研究,还可能在临床基因治疗中具有广泛应用前景,推动了基因组编辑技术的进一步发展。

研究局限性和未来方向

  • 局限性:本研究主要在细胞系和小鼠模型中进行,未来需要在其他生物体和更复杂的生物系统中验证其有效性。
  • 未来方向:建议进一步优化引导RNA设计,以提高其适用范围;同时,探索该方法在其他基因组编辑应用中的潜力,如基因修复和基因插入等。

通过以上研究,可以看出,成对引导RNA与Cas9切口酶的结合为基因组编辑提供了一种新颖且高效的工具,值得在更广泛的生物医学研究中推广应用。

参考文献

  1. CRISPR/Cas system and its role in phage-bacteria interactions. - Hélène Deveau;Josiane E Garneau;Sylvain Moineau - Annual review of microbiology (2010)
  2. Genome engineering of Drosophila with the CRISPR RNA-guided Cas9 nuclease. - Scott J Gratz;Alexander M Cummings;Jennifer N Nguyen;Danielle C Hamm;Laura K Donohue;Melissa M Harrison;Jill Wildonger;Kate M O'Connor-Giles - Genetics (2013)
  3. Efficient TALEN-mediated gene knockout in livestock. - Daniel F Carlson;Wenfang Tan;Simon G Lillico;Dana Stverakova;Chris Proudfoot;Michelle Christian;Daniel F Voytas;Charles R Long;C Bruce A Whitelaw;Scott C Fahrenkrug - Proceedings of the National Academy of Sciences of the United States of America (2012)
  4. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. - Giedrius Gasiunas;Rodolphe Barrangou;Philippe Horvath;Virginijus Siksnys - Proceedings of the National Academy of Sciences of the United States of America (2012)
  5. A simple cipher governs DNA recognition by TAL effectors. - Matthew J Moscou;Adam J Bogdanove - Science (New York, N.Y.) (2009)
  6. CRISPR/Cas, the immune system of bacteria and archaea. - Philippe Horvath;Rodolphe Barrangou - Science (New York, N.Y.) (2010)
  7. Efficient construction of sequence-specific TAL effectors for modulating mammalian transcription. - Feng Zhang;Le Cong;Simona Lodato;Sriram Kosuri;George M Church;Paola Arlotta - Nature biotechnology (2011)
  8. Generation of isogenic pluripotent stem cells differing exclusively at two early onset Parkinson point mutations. - Frank Soldner;Josée Laganière;Albert W Cheng;Dirk Hockemeyer;Qing Gao;Raaji Alagappan;Vikram Khurana;Lawrence I Golbe;Richard H Myers;Susan Lindquist;Lei Zhang;Dmitry Guschin;Lauren K Fong;B Joseph Vu;Xiangdong Meng;Fyodor D Urnov;Edward J Rebar;Philip D Gregory;H Steve Zhang;Rudolf Jaenisch - Cell (2011)
  9. Targeted genome editing across species using ZFNs and TALENs. - Andrew J Wood;Te-Wen Lo;Bryan Zeitler;Catherine S Pickle;Edward J Ralston;Andrew H Lee;Rainier Amora;Jeffrey C Miller;Elo Leung;Xiangdong Meng;Lei Zhang;Edward J Rebar;Philip D Gregory;Fyodor D Urnov;Barbara J Meyer - Science (New York, N.Y.) (2011)
  10. Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. - Seung Woo Cho;Sojung Kim;Jong Min Kim;Jin-Soo Kim - Nature biotechnology (2013)

引用本文的文献

  1. A simplified and efficient germline-specific CRISPR/Cas9 system for Drosophila genomic engineering. - Zachary L Sebo;Han B Lee;Ying Peng;Yi Guo - Fly (2014)
  2. Genome engineering using the CRISPR-Cas9 system. - F Ann Ran;Patrick D Hsu;Jason Wright;Vineeta Agarwala;David A Scott;Feng Zhang - Nature protocols (2013)
  3. Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases. - Seung Woo Cho;Sojung Kim;Yongsub Kim;Jiyeon Kweon;Heon Seok Kim;Sangsu Bae;Jin-Soo Kim - Genome research (2014)
  4. Phylogeny of Cas9 determines functional exchangeability of dual-RNA and Cas9 among orthologous type II CRISPR-Cas systems. - Ines Fonfara;Anaïs Le Rhun;Krzysztof Chylinski;Kira S Makarova;Anne-Laure Lécrivain;Janek Bzdrenga;Eugene V Koonin;Emmanuelle Charpentier - Nucleic acids research (2014)
  5. Effect of genetic variation in a Drosophila model of diabetes-associated misfolded human proinsulin. - Bin Z He;Michael Z Ludwig;Desiree A Dickerson;Levi Barse;Bharath Arun;Bjarni J Vilhjálmsson;Pengyao Jiang;Soo-Young Park;Natalia A Tamarina;Scott B Selleck;Patricia J Wittkopp;Graeme I Bell;Martin Kreitman - Genetics (2014)
  6. Newer gene editing technologies toward HIV gene therapy. - N Manjunath;Guohua Yi;Ying Dang;Premlata Shankar - Viruses (2013)
  7. megaTALs: a rare-cleaving nuclease architecture for therapeutic genome engineering. - Sandrine Boissel;Jordan Jarjour;Alexander Astrakhan;Andrew Adey;Agnès Gouble;Philippe Duchateau;Jay Shendure;Barry L Stoddard;Michael T Certo;David Baker;Andrew M Scharenberg - Nucleic acids research (2014)
  8. Exploiting CRISPR/Cas systems for biotechnology. - Timothy R Sampson;David S Weiss - BioEssays : news and reviews in molecular, cellular and developmental biology (2014)
  9. Mutagenesis and homologous recombination in Drosophila cell lines using CRISPR/Cas9. - Andrew R Bassett;Charlotte Tibbit;Chris P Ponting;Ji-Long Liu - Biology open (2014)
  10. Genetic screens in human cells using the CRISPR-Cas9 system. - Tim Wang;Jenny J Wei;David M Sabatini;Eric S Lander - Science (New York, N.Y.) (2014)

... (1743 更多 篇文献)


© 2025 MaltSci 麦伴科研 - 我们用人工智能技术重塑科研