Appearance
Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system.
文献信息
| DOI | 10.1093/nar/gkt520 |
|---|---|
| PMID | 23761437 |
| 期刊 | Nucleic acids research |
| 影响因子 | 13.1 |
| JCR 分区 | Q1 |
| 发表年份 | 2013 |
| 被引次数 | 539 |
| 关键词 | CRISPR-Cas系统, 基因表达调控, 转录激活, 转录抑制, 合成生物学 |
| 文献类型 | Journal Article, Research Support, N.I.H., Extramural |
| ISSN | 0305-1048 |
| 页码 | 7429-37 |
| 期号 | 41(15) |
| 作者 | David Bikard, Wenyan Jiang, Poulami Samai, Ann Hochschild, Feng Zhang, Luciano A Marraffini |
一句话小结
本研究开发了一种改造的Cas9核酸酶突变体,能够通过抑制或激活RNA聚合酶的结合来实现可编程的转录调控。这项技术为基因功能研究和合成生物学的发展提供了高效的工具,具有重要的应用潜力。
在麦伴科研 (maltsci.com) 搜索更多文献
CRISPR-Cas系统 · 基因表达调控 · 转录激活 · 转录抑制 · 合成生物学
摘要
人工控制转录的能力对于基因功能研究以及构建具有特定性质的合成基因网络至关重要。Cas9是一种由RNA引导的双链DNA核酸酶,参与CRISPR-Cas免疫系统对抗原核病毒的防御。我们描述了一种保留DNA结合活性的Cas9核酸酶突变体的应用,该突变体可以通过阻止RNA聚合酶(RNAP)与启动子序列结合,作为可编程的转录抑制因子,或通过阻断正在进行的RNAP作为转录终止子。此外,将RNAP的ω亚基与定向结合上游启动子区域的Cas9核酸酶突变体融合,可以实现可编程的转录激活。这项技术所实现的基因表达的简单高效调控是研究基因网络、发展合成生物学和生物技术应用的有用资产。
英文摘要
The ability to artificially control transcription is essential both to the study of gene function and to the construction of synthetic gene networks with desired properties. Cas9 is an RNA-guided double-stranded DNA nuclease that participates in the CRISPR-Cas immune defense against prokaryotic viruses. We describe the use of a Cas9 nuclease mutant that retains DNA-binding activity and can be engineered as a programmable transcription repressor by preventing the binding of the RNA polymerase (RNAP) to promoter sequences or as a transcription terminator by blocking the running RNAP. In addition, a fusion between the omega subunit of the RNAP and a Cas9 nuclease mutant directed to bind upstream promoter regions can achieve programmable transcription activation. The simple and efficient modulation of gene expression achieved by this technology is a useful asset for the study of gene networks and for the development of synthetic biology and biotechnological applications.
麦伴智能科研服务
主要研究问题
- 如何评估工程化CRISPR-Cas系统在不同细菌中的可行性和效率?
- 在合成生物学中,使用可编程转录抑制和激活的具体应用案例有哪些?
- 是否可以将这种CRISPR-Cas系统应用于真核生物的基因表达调控?如果可以,面临哪些挑战?
- 这种系统的可编程性如何影响基因网络的构建和功能研究?
- 在基因表达调控中,CRISPR-Cas系统相比传统方法有什么独特优势和局限性?
核心洞察
研究背景和目的
CRISPR-Cas系统是细菌对病毒感染的一种免疫机制。近年来,科学家们开始探索其在基因表达调控中的应用。该研究旨在开发一种可编程的CRISPR-Cas系统,以实现对细菌基因表达的抑制和激活,为合成生物学和生物技术应用提供新工具。
主要方法/材料/实验设计
本研究采用了改造的Cas9核酸酶,称为“死Cas9”(dCas9),该酶保留了DNA结合能力但失去了切割活性。研究主要通过以下步骤实现基因表达的调控:
- 细菌株和培养条件:使用大肠杆菌(E. coli)和肺炎链球菌(S. pneumoniae)作为模型生物,进行培养和转化。
- 转录抑制实验:通过引导dCas9结合到启动子区域或开放阅读框(ORF)来抑制转录。
- 转录激活实验:将dCas9与RNA聚合酶的ω亚基融合,导向其结合到弱启动子上以激活转录。
- 结果测量:使用荧光蛋白(GFP)和β-半乳糖苷酶活性测定基因表达水平。
关键结果和发现
- 转录抑制:dCas9结合到启动子区域可有效抑制基因转录,抑制程度与结合位置有关,最佳抑制效果出现在靠近启动子区域时。
- 转录激活:通过dCas9与ω亚基的融合,成功激活了lacZ基因,激活倍数最高可达23倍,且激活效果与结合位置和启动子强度相关。
- 不完全互补性:引入crRNA与目标序列间的不完全互补性可以调节抑制水平,显示出对基因表达的精细调控能力。
主要结论/意义/创新性
本研究展示了利用改造的CRISPR-Cas系统(dCas9)实现细菌基因表达的可编程抑制和激活的潜力。该技术不仅简化了基因调控过程,还为合成生物学和生物技术的应用提供了新的工具。研究表明,dCas9能够在不改变基因启动子序列的情况下,实现对基因表达的精确调控。
研究局限性和未来方向
- 局限性:研究主要集中在大肠杆菌和肺炎链球菌,未来需要在其他细菌和真核生物中验证该系统的有效性和特异性。
- 未来方向:探索dCas9在多基因调控中的应用,开发更高效的激活和抑制策略,以及结合其他合成生物学技术,推动基因网络的构建和调控。
| 项目 | 结果 |
|---|---|
| 转录抑制 | dCas9结合启动子区域可实现高效抑制 |
| 转录激活 | dCas9-ω亚基融合可激活lacZ基因 |
| 调控精细性 | 不完全互补性调节抑制水平 |
| 未来应用 | 合成生物学、基因网络调控 |
参考文献
- Gene-expression tools for the metabolic engineering of bacteria. - J D Keasling - Trends in biotechnology (1999)
- Efficient genome editing in zebrafish using a CRISPR-Cas system. - Woong Y Hwang;Yanfang Fu;Deepak Reyon;Morgan L Maeder;Shengdar Q Tsai;Jeffry D Sander;Randall T Peterson;J-R Joanna Yeh;J Keith Joung - Nature biotechnology (2013)
- Mature clustered, regularly interspaced, short palindromic repeats RNA (crRNA) length is measured by a ruler mechanism anchored at the precursor processing site. - Asma Hatoum-Aslan;Inbal Maniv;Luciano A Marraffini - Proceedings of the National Academy of Sciences of the United States of America (2011)
- Phage response to CRISPR-encoded resistance in Streptococcus thermophilus. - Hélène Deveau;Rodolphe Barrangou;Josiane E Garneau;Jessica Labonté;Christophe Fremaux;Patrick Boyaval;Dennis A Romero;Philippe Horvath;Sylvain Moineau - Journal of bacteriology (2008)
- A rapid method for efficient gene replacement in the filamentous fungus Aspergillus nidulans. - M K Chaveroche;J M Ghigo;C d'Enfert - Nucleic acids research (2000)
- Unlocking the potential of the human genome with RNA interference. - Gregory J Hannon;John J Rossi - Nature (2004)
- FACS-optimized mutants of the green fluorescent protein (GFP). - B P Cormack;R H Valdivia;S Falkow - Gene (1996)
- Comprehensive interrogation of natural TALE DNA-binding modules and transcriptional repressor domains. - Le Cong;Ruhong Zhou;Yu-Chi Kuo;Margaret Cunniff;Feng Zhang - Nature communications (2012)
- A synthetic biology framework for programming eukaryotic transcription functions. - Ahmad S Khalil;Timothy K Lu;Caleb J Bashor;Cherie L Ramirez;Nora C Pyenson;J Keith Joung;James J Collins - Cell (2012)
- Interaction between bacteriophage DMS3 and host CRISPR region inhibits group behaviors of Pseudomonas aeruginosa. - Michael E Zegans;Jeffrey C Wagner;Kyle C Cady;Daniel M Murphy;John H Hammond;George A O'Toole - Journal of bacteriology (2009)
引用本文的文献
- Optical control of mammalian endogenous transcription and epigenetic states. - Silvana Konermann;Mark D Brigham;Alexandro Trevino;Patrick D Hsu;Matthias Heidenreich;Le Cong;Randall J Platt;David A Scott;George M Church;Feng Zhang - Nature (2013)
- CRISPR RNA-guided activation of endogenous human genes. - Morgan L Maeder;Samantha J Linder;Vincent M Cascio;Yanfang Fu;Quan H Ho;J Keith Joung - Nature methods (2013)
- A ruler protein in a complex for antiviral defense determines the length of small interfering CRISPR RNAs. - Asma Hatoum-Aslan;Poulami Samai;Inbal Maniv;Wenyan Jiang;Luciano A Marraffini - The Journal of biological chemistry (2013)
- Tunable and multifunctional eukaryotic transcription factors based on CRISPR/Cas. - Fahim Farzadfard;Samuel D Perli;Timothy K Lu - ACS synthetic biology (2013)
- Orthogonal Cas9 proteins for RNA-guided gene regulation and editing. - Kevin M Esvelt;Prashant Mali;Jonathan L Braff;Mark Moosburner;Stephanie J Yaung;George M Church - Nature methods (2013)
- Cas9 as a versatile tool for engineering biology. - Prashant Mali;Kevin M Esvelt;George M Church - Nature methods (2013)
- Chromosomal targeting by CRISPR-Cas systems can contribute to genome plasticity in bacteria. - Ron L Dy;Andrew R Pitman;Peter C Fineran - Mobile genetic elements (2013)
- Regulation of endogenous human gene expression by ligand-inducible TALE transcription factors. - Andrew C Mercer;Thomas Gaj;Shannon J Sirk;Brian M Lamb;Carlos F Barbas - ACS synthetic biology (2014)
- Phylogeny of Cas9 determines functional exchangeability of dual-RNA and Cas9 among orthologous type II CRISPR-Cas systems. - Ines Fonfara;Anaïs Le Rhun;Krzysztof Chylinski;Kira S Makarova;Anne-Laure Lécrivain;Janek Bzdrenga;Eugene V Koonin;Emmanuelle Charpentier - Nucleic acids research (2014)
- Control of gene expression by CRISPR-Cas systems. - David Bikard;Luciano A Marraffini - F1000prime reports (2013)
... (529 更多 篇文献)
© 2025 MaltSci 麦伴科研 - 我们用人工智能技术重塑科研
