Skip to content

One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering.

文献信息

PMID23643243
期刊Cell
影响因子42.5
JCR 分区Q1
发表年份2013
被引次数1900
关键词CRISPR/Cas系统, 基因编辑, 小鼠突变, 多基因, 胚胎干细胞
文献类型Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't
ISSN0092-8674
页码910-8
期号153(4)
作者Haoyi Wang, Hui Yang, Chikdu S Shivalila, Meelad M Dawlaty, Albert W Cheng, Feng Zhang, Rudolf Jaenisch

一句话小结

本研究利用CRISPR/Cas系统实现了在小鼠胚胎干细胞中高效同时破坏五个基因,生成双等位基因突变的小鼠,突变效率高达80%。该方法不仅显著简化了多基因突变小鼠的生成过程,还将加速对功能冗余基因及其表观基因相互作用的研究。

在麦伴科研 (maltsci.com) 搜索更多文献

CRISPR/Cas系统 · 基因编辑 · 小鼠突变 · 多基因 · 胚胎干细胞

摘要

携带多个基因突变的小鼠传统上是通过在胚胎干细胞中进行顺序重组和/或耗时的单一突变小鼠的交配来生成的。CRISPR/Cas系统已被改编为一种高效的基因靶向技术,具有多重基因组编辑的潜力。我们展示了CRISPR/Cas介导的基因编辑能够以高效率同时破坏小鼠胚胎干细胞中的五个基因(Tet1、Tet2、Tet3、Sry、Uty——共8个等位基因)。将Cas9 mRNA与针对Tet1和Tet2的单导RNA(sgRNA)共同注射到合子中,生成了这两个基因具有双等位基因突变的小鼠,效率达80%。最后,我们展示了将Cas9 mRNA/sgRNA与突变寡核苷酸共同注射,可以同时在两个靶基因中生成精确的点突变。因此,CRISPR/Cas系统允许一步生成携带多个基因突变的动物,这一方法将大大加速对功能冗余基因及其表观基因相互作用的体内研究。

英文摘要

Mice carrying mutations in multiple genes are traditionally generated by sequential recombination in embryonic stem cells and/or time-consuming intercrossing of mice with a single mutation. The CRISPR/Cas system has been adapted as an efficient gene-targeting technology with the potential for multiplexed genome editing. We demonstrate that CRISPR/Cas-mediated gene editing allows the simultaneous disruption of five genes (Tet1, 2, 3, Sry, Uty--8 alleles) in mouse embryonic stem (ES) cells with high efficiency. Coinjection of Cas9 mRNA and single-guide RNAs (sgRNAs) targeting Tet1 and Tet2 into zygotes generated mice with biallelic mutations in both genes with an efficiency of 80%. Finally, we show that coinjection of Cas9 mRNA/sgRNAs with mutant oligos generated precise point mutations simultaneously in two target genes. Thus, the CRISPR/Cas system allows the one-step generation of animals carrying mutations in multiple genes, an approach that will greatly accelerate the in vivo study of functionally redundant genes and of epistatic gene interactions.

麦伴智能科研服务

智能阅读回答你对文献的任何问题,帮助理解文献中的复杂图表和公式
定位观点定位某个观点在文献中的蛛丝马迹
加入知识库完成数据提取,报告撰写等更多高级知识挖掘功能

主要研究问题

  1. 在CRISPR/Cas系统中,如何选择适合的sgRNAs以确保高效的多基因突变?
  2. CRISPR/Cas技术在生成多基因突变小鼠时,与传统的基因重组方法相比,有哪些优势和局限性?
  3. 这种一体化的基因编辑方法在其他动物模型中是否也适用?如果是,如何调整技术以适应不同物种?
  4. 在多基因突变的研究中,如何评估基因间的表观遗传相互作用?
  5. CRISPR/Cas介导的基因编辑在研究功能冗余基因时,有哪些具体的实验设计建议?

核心洞察

研究背景和目的

传统上,通过在胚胎干细胞中进行序列重组或耗时的单基因小鼠交配来生成携带多基因突变的小鼠。这种方法效率低下且耗时。CRISPR/Cas系统作为一种高效的基因靶向技术,具有多重基因组编辑的潜力。本研究旨在展示CRISPR/Cas介导的基因编辑技术在小鼠胚胎干细胞中同时破坏多个基因的能力,从而加速对功能冗余基因和表观遗传基因相互作用的体内研究。

主要方法/材料/实验设计

本研究采用CRISPR/Cas系统进行基因编辑,具体步骤如下:

Mermaid diagram
  1. 设计sgRNA:针对目标基因Tet1、Tet2、Tet3、Sry和Uty设计单导向RNA(sgRNA)。
  2. 合成Cas9 mRNA:合成编码Cas9蛋白的mRNA。
  3. 注射:将Cas9 mRNA和sgRNA共同注射到小鼠受精卵中。
  4. 筛选突变小鼠:通过PCR和测序筛选出具有双等位基因突变的小鼠,达到80%的效率。
  5. 注射突变寡核苷酸:与sgRNA共同注射突变寡核苷酸,以实现两个目标基因的精确点突变。

关键结果和发现

  • 使用CRISPR/Cas系统,研究成功地在小鼠胚胎干细胞中同时破坏了五个基因,突变效率高。
  • 通过共同注射Cas9 mRNA和sgRNA,成功生成了具有双等位基因突变的小鼠,效率高达80%。
  • 采用突变寡核苷酸与sgRNA共同注射的方式,实现了两个目标基因的精确点突变。

主要结论/意义/创新性

本研究表明,CRISPR/Cas系统可以在一个步骤中生成携带多个基因突变的小鼠,这种方法显著提高了多基因突变小鼠的生成效率。这一技术的应用将极大地推动对功能冗余基因及其相互作用的研究,提供了新的实验工具和策略,为生物医学研究开辟了新的方向。

研究局限性和未来方向

  • 局限性:本研究主要集中在小鼠模型,尚需在其他物种中验证该技术的适用性和效率。
  • 未来方向:建议进一步探索CRISPR/Cas系统在不同生物体中的应用,及其在基因治疗和疾病模型建立中的潜力。此外,优化sgRNA设计和提高突变效率仍然是未来研究的重点。

参考文献

  1. Knockout mice created by TALEN-mediated gene targeting. - Young Hoon Sung;In-Jeoung Baek;Duk Hyoung Kim;Jisun Jeon;Jaehoon Lee;Kyunghee Lee;Daewon Jeong;Jin-Soo Kim;Han-Woong Lee - Nature biotechnology (2013)
  2. Efficient genome editing in zebrafish using a CRISPR-Cas system. - Woong Y Hwang;Yanfang Fu;Deepak Reyon;Morgan L Maeder;Shengdar Q Tsai;Jeffry D Sander;Randall T Peterson;J-R Joanna Yeh;J Keith Joung - Nature biotechnology (2013)
  3. The role of Tet3 DNA dioxygenase in epigenetic reprogramming by oocytes. - Tian-Peng Gu;Fan Guo;Hui Yang;Hai-Ping Wu;Gui-Fang Xu;Wei Liu;Zhi-Guo Xie;Linyu Shi;Xinyi He;Seung-gi Jin;Khursheed Iqbal;Yujiang Geno Shi;Zixin Deng;Piroska E Szabó;Gerd P Pfeifer;Jinsong Li;Guo-Liang Xu - Nature (2011)
  4. Double-strand break end resection and repair pathway choice. - Lorraine S Symington;Jean Gautier - Annual review of genetics (2011)
  5. RNA-guided editing of bacterial genomes using CRISPR-Cas systems. - Wenyan Jiang;David Bikard;David Cox;Feng Zhang;Luciano A Marraffini - Nature biotechnology (2013)
  6. Direct production of mouse disease models by embryo microinjection of TALENs and oligodeoxynucleotides. - Benedikt Wefers;Melanie Meyer;Oskar Ortiz;Martin Hrabé de Angelis;Jens Hansen;Wolfgang Wurst;Ralf Kühn - Proceedings of the National Academy of Sciences of the United States of America (2013)
  7. Deletion of Tet2 in mice leads to dysregulated hematopoietic stem cells and subsequent development of myeloid malignancies. - Zhe Li;Xiaoqiang Cai;Chen-Leng Cai;Jiapeng Wang;Wenyong Zhang;Bruce E Petersen;Feng-Chun Yang;Mingjiang Xu - Blood (2011)
  8. Generation of isogenic pluripotent stem cells differing exclusively at two early onset Parkinson point mutations. - Frank Soldner;Josée Laganière;Albert W Cheng;Dirk Hockemeyer;Qing Gao;Raaji Alagappan;Vikram Khurana;Lawrence I Golbe;Richard H Myers;Susan Lindquist;Lei Zhang;Dmitry Guschin;Lauren K Fong;B Joseph Vu;Xiangdong Meng;Fyodor D Urnov;Edward J Rebar;Philip D Gregory;H Steve Zhang;Rudolf Jaenisch - Cell (2011)
  9. Combined deficiency of Tet1 and Tet2 causes epigenetic abnormalities but is compatible with postnatal development. - Meelad M Dawlaty;Achim Breiling;Thuc Le;Günter Raddatz;M Inmaculada Barrasa;Albert W Cheng;Qing Gao;Benjamin E Powell;Zhe Li;Mingjiang Xu;Kym F Faull;Frank Lyko;Rudolf Jaenisch - Developmental cell (2013)
  10. TAL effectors: customizable proteins for DNA targeting. - Adam J Bogdanove;Daniel F Voytas - Science (New York, N.Y.) (2011)

引用本文的文献

  1. A coupled protein and probe engineering approach for selective inhibition and activity-based probe labeling of the caspases. - Junpeng Xiao;Petr Broz;Aaron W Puri;Edgar Deu;Montse Morell;Denise M Monack;Matthew Bogyo - Journal of the American Chemical Society (2013)
  2. Genome engineering of Drosophila with the CRISPR RNA-guided Cas9 nuclease. - Scott J Gratz;Alexander M Cummings;Jennifer N Nguyen;Danielle C Hamm;Laura K Donohue;Melissa M Harrison;Jill Wildonger;Kate M O'Connor-Giles - Genetics (2013)
  3. Progress and prospects in stem cell therapy. - Xiu-ling Xu;Fei Yi;Hui-ze Pan;Shun-lei Duan;Zhi-chao Ding;Guo-hong Yuan;Jing Qu;Hai-chen Zhang;Guang-hui Liu - Acta pharmacologica Sinica (2013)
  4. Novel GM animal technologies and their governance. - Ann Bruce;David Castle;Corrina Gibbs;Joyce Tait;C Bruce A Whitelaw - Transgenic research (2013)
  5. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. - Yanfang Fu;Jennifer A Foden;Cyd Khayter;Morgan L Maeder;Deepak Reyon;J Keith Joung;Jeffry D Sander - Nature biotechnology (2013)
  6. Rad51, friend or foe? - Sue Mei Tan-Wong;Nick J Proudfoot - eLife (2013)
  7. Heritable genome editing in C. elegans via a CRISPR-Cas9 system. - Ari E Friedland;Yonatan B Tzur;Kevin M Esvelt;Monica P Colaiácovo;George M Church;John A Calarco - Nature methods (2013)
  8. Highly efficient targeted mutagenesis of Drosophila with the CRISPR/Cas9 system. - Andrew R Bassett;Charlotte Tibbit;Chris P Ponting;Ji-Long Liu - Cell reports (2013)
  9. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. - Luke A Gilbert;Matthew H Larson;Leonardo Morsut;Zairan Liu;Gloria A Brar;Sandra E Torres;Noam Stern-Ginossar;Onn Brandman;Evan H Whitehead;Jennifer A Doudna;Wendell A Lim;Jonathan S Weissman;Lei S Qi - Cell (2013)
  10. Overcoming barriers and thresholds - signaling of oligomeric Aβ through the prion protein to Fyn. - Hansen Wang;Carl He Ren;C Geeth Gunawardana;Gerold Schmitt-Ulms - Molecular neurodegeneration (2013)

... (1890 更多 篇文献)


© 2025 MaltSci 麦伴科研 - 我们用人工智能技术重塑科研