Skip to content

Developing mRNA-vaccine technologies.

文献信息

DOI10.4161/rna.22269
PMID23064118
期刊RNA biology
影响因子3.4
JCR 分区Q2
发表年份2012
被引次数299
关键词辅助手段, 配方, mRNA, mRNA设计, mRNA生产
文献类型Journal Article, Review
ISSN1547-6286
页码1319-30
期号9(11)
作者Thomas Schlake, Andreas Thess, Mariola Fotin-Mleczek, Karl-Josef Kallen

一句话小结

mRNA疫苗以其优越的免疫特性和安全性,能够有效诱导细胞免疫和体液免疫,且不受MHC单倍型限制,展现出优于传统疫苗的灵活性和广阔应用前景。该研究强调了mRNA作为疫苗技术平台的潜力,可能为未来疫苗开发带来重大变革。

在麦伴科研 (maltsci.com) 搜索更多文献

辅助手段 · 配方 · mRNA · mRNA设计 · mRNA生产

摘要

mRNA疫苗结合了理想的免疫学特性、卓越的安全性以及基因疫苗未满足的灵活性。基于原位蛋白表达,mRNA疫苗能够诱导平衡的免疫反应,既包括细胞免疫,也包括体液免疫,同时不受MHC单倍型限制。此外,mRNA作为一种内在安全的载体,是信息的极小且仅暂时的载体,不与基因组相互作用。由于可以从mRNA表达任何蛋白质而无需调整生产过程,mRNA疫苗在开发方面也提供了最大的灵活性。综上所述,mRNA是一种前景广阔的载体,可能成为改变游戏规则的疫苗技术平台的基础。在这里,我们概述了在开发基于mRNA的疫苗技术时应考虑的不同方面的现有知识。

英文摘要

mRNA vaccines combine desirable immunological properties with an outstanding safety profile and the unmet flexibility of genetic vaccines. Based on in situ protein expression, mRNA vaccines are capable of inducing a balanced immune response comprising both cellular and humoral immunity while not subject to MHC haplotype restriction. In addition, mRNA is an intrinsically safe vector as it is a minimal and only transient carrier of information that does not interact with the genome. Because any protein can be expressed from mRNA without the need to adjust the production process, mRNA vaccines also offer maximum flexibility with respect to development. Taken together, mRNA presents a promising vector that may well become the basis of a game-changing vaccine technology platform. Here, we outline the current knowledge regarding different aspects that should be considered when developing an mRNA-based vaccine technology.

麦伴智能科研服务

智能阅读回答你对文献的任何问题,帮助理解文献中的复杂图表和公式
定位观点定位某个观点在文献中的蛛丝马迹
加入知识库完成数据提取,报告撰写等更多高级知识挖掘功能

主要研究问题

  1. mRNA疫苗技术在应对新兴传染病方面的潜力如何?
  2. 在开发mRNA疫苗时,如何确保其在不同人群中的有效性和安全性?
  3. mRNA疫苗技术与传统疫苗技术相比,有哪些独特的优势和挑战?
  4. 未来mRNA疫苗技术的研究方向和创新点可能是什么?
  5. 在mRNA疫苗的生产过程中,如何优化生产效率和降低成本?

核心洞察

研究背景和目的

mRNA疫苗技术是一种新兴的疫苗平台,具有良好的免疫学特性和安全性。本文旨在探讨mRNA疫苗的开发,包括其生产、设计、免疫特性以及在癌症和传染病中的应用潜力。

主要方法/材料/实验设计

mRNA疫苗的开发涉及多个步骤,包括mRNA的合成、设计、纯化、递送和免疫反应的评估。以下是关键步骤的流程图:

Mermaid diagram
  1. mRNA合成:通过体外转录技术从质粒DNA(pDNA)模板合成mRNA,使用噬菌体RNA聚合酶进行转录。
  2. mRNA设计:确保合成的mRNA包含必要的5'帽和3'聚腺苷酸尾巴,以提高翻译效率和稳定性。设计时需避免不稳定的序列和微小RNA结合位点。
  3. mRNA纯化:使用色谱法去除杂质,确保mRNA的纯度和活性。
  4. mRNA递送:通过不同的递送系统(如脂质体、聚合物等)将mRNA递送至目标细胞。
  5. 免疫反应评估:通过动物实验评估疫苗的免疫原性和疗效。

关键结果和发现

  • mRNA疫苗能够诱导细胞和体液免疫反应,且不受MHC限制。
  • 经过优化的mRNA在小鼠模型中表现出显著的蛋白表达和免疫反应。
  • 研究表明,mRNA的设计(如使用抗逆转录帽类似物和适当的聚腺苷酸尾巴长度)可以显著提高翻译效率和免疫应答。

主要结论/意义/创新性

mRNA疫苗代表了一种灵活且安全的疫苗开发平台,具有应对多种疾病(如感染和癌症)的潜力。其开发过程中的关键创新在于优化mRNA的结构设计和递送方式,以增强其免疫效果。mRNA疫苗的成功应用可能会改变传统疫苗开发的格局,成为一种“颠覆性技术”。

研究局限性和未来方向

尽管mRNA疫苗显示出良好的前景,但仍面临以下挑战:

  • mRNA的稳定性和递送效率仍需进一步优化。
  • 需要更多临床试验以验证其在不同人群中的安全性和有效性。
  • 未来的研究应关注mRNA疫苗与其他治疗手段的联合应用,以提高疗效。

总结而言,mRNA技术的不断进步和优化有望在疫苗开发领域带来重大突破,为公共健康提供新的解决方案。

参考文献

  1. Foreign nucleic acids as the stimulus to make interferon. - A ISAACS;R A COX;Z ROTEM - Lancet (London, England) (1963)
  2. Systematic discovery of structural elements governing stability of mammalian messenger RNAs. - Hani Goodarzi;Hamed S Najafabadi;Panos Oikonomou;Todd M Greco;Lisa Fish;Reza Salavati;Ileana M Cristea;Saeed Tavazoie - Nature (2012)
  3. Nucleotide sequences and modifications that determine RIG-I/RNA binding and signaling activities. - Dina Uzri;Lee Gehrke - Journal of virology (2009)
  4. Dendritic cells pulsed with RNA are potent antigen-presenting cells in vitro and in vivo. - D Boczkowski;S K Nair;D Snyder;E Gilboa - The Journal of experimental medicine (1996)
  5. Interferon-inducible antiviral effectors. - Anthony J Sadler;Bryan R G Williams - Nature reviews. Immunology (2008)
  6. Suppression of RNA recognition by Toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA. - Katalin Karikó;Michael Buckstein;Houping Ni;Drew Weissman - Immunity (2005)
  7. A novel transcription property of SP6 and T7 RNA polymerases: dependence on template structure. - E T Schenborn;R C Mierendorf - Nucleic acids research (1985)
  8. Increased erythropoiesis in mice injected with submicrogram quantities of pseudouridine-containing mRNA encoding erythropoietin. - Katalin Karikó;Hiromi Muramatsu;Jason M Keller;Drew Weissman - Molecular therapy : the journal of the American Society of Gene Therapy (2012)
  9. In vivo application of RNA leads to induction of specific cytotoxic T lymphocytes and antibodies. - I Hoerr;R Obst;H G Rammensee;G Jung - European journal of immunology (2000)
  10. Recombinant vector vaccines in vaccinology. - M R Hilleman - Developments in biological standardization (1994)

引用本文的文献

  1. A novel, disruptive vaccination technology: self-adjuvanted RNActive(®) vaccines. - Karl-Josef Kallen;Regina Heidenreich;Margit Schnee;Benjamin Petsch;Thomas Schlake;Andreas Thess;Patrick Baumhof;Birgit Scheel;Sven D Koch;Mariola Fotin-Mleczek - Human vaccines & immunotherapeutics (2013)
  2. A development that may evolve into a revolution in medicine: mRNA as the basis for novel, nucleotide-based vaccines and drugs. - Karl-Josef Kallen;Andreas Theß - Therapeutic advances in vaccines (2014)
  3. Translation of genomics-guided RNA-based personalised cancer vaccines: towards the bedside. - V Boisguérin;J C Castle;M Loewer;J Diekmann;F Mueller;C M Britten;S Kreiter;Ö Türeci;U Sahin - British journal of cancer (2014)
  4. Three-Dimensional Mapping of mRNA Export through the Nuclear Pore Complex. - Steven J Schnell;Jiong Ma;Weidong Yang - Genes (2014)
  5. mRNA vaccine CV9103 and CV9104 for the treatment of prostate cancer. - Steffen Rausch;Christian Schwentner;Arnulf Stenzl;Jens Bedke - Human vaccines & immunotherapeutics (2014)
  6. Bridging infectious disease vaccines with cancer immunotherapy: a role for targeted RNA based immunotherapeutics. - Elias J Sayour;Luis Sanchez-Perez;Catherine Flores;Duane A Mitchell - Journal for immunotherapy of cancer (2015)
  7. An Enterovirus-Like RNA Construct for Colon Cancer Suicide Gene Therapy. - Mahsa Rasekhian;Ladan Teimoori-Toolabi;Safieh Amini;Kayhan Azadmanesh - Iranian biomedical journal (2015)
  8. Sequence-engineered mRNA Without Chemical Nucleoside Modifications Enables an Effective Protein Therapy in Large Animals. - Andreas Thess;Stefanie Grund;Barbara L Mui;Michael J Hope;Patrick Baumhof;Mariola Fotin-Mleczek;Thomas Schlake - Molecular therapy : the journal of the American Society of Gene Therapy (2015)
  9. Efficient expression of stabilized mRNA PEG-peptide polyplexes in liver. - S T Crowley;J A Poliskey;N J Baumhover;K G Rice - Gene therapy (2015)
  10. RNA-Based Vaccines in Cancer Immunotherapy. - Megan A McNamara;Smita K Nair;Eda K Holl - Journal of immunology research (2015)

... (289 更多 篇文献)


© 2025 MaltSci 麦伴科研 - 我们用人工智能技术重塑科研